IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1004.4272.html

When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators

Author

Listed:
  • Ester Pantaleo
  • Michele Tumminello
  • Fabrizio Lillo
  • Rosario N. Mantegna

Abstract

The use of improved covariance matrix estimators as an alternative to the sample estimator is considered an important approach for enhancing portfolio optimization. Here we empirically compare the performance of 9 improved covariance estimation procedures by using daily returns of 90 highly capitalized US stocks for the period 1997-2007. We find that the usefulness of covariance matrix estimators strongly depends on the ratio between estimation period T and number of stocks N, on the presence or absence of short selling, and on the performance metric considered. When short selling is allowed, several estimation methods achieve a realized risk that is significantly smaller than the one obtained with the sample covariance method. This is particularly true when T/N is close to one. Moreover many estimators reduce the fraction of negative portfolio weights, while little improvement is achieved in the degree of diversification. On the contrary when short selling is not allowed and T>N, the considered methods are unable to outperform the sample covariance in terms of realized risk but can give much more diversified portfolios than the one obtained with the sample covariance. When T

Suggested Citation

  • Ester Pantaleo & Michele Tumminello & Fabrizio Lillo & Rosario N. Mantegna, 2010. "When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators," Papers 1004.4272, arXiv.org.
  • Handle: RePEc:arx:papers:1004.4272
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1004.4272
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1004.4272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.