IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v23y2012icp11-19.html
   My bibliography  Save this article

Quantifying volatility clustering in financial time series

Author

Listed:
  • Tseng, Jie-Jun
  • Li, Sai-Ping

Abstract

A quantitative method is introduced in this work to quantify and compare the volatility clustering behavior among various financial time series. In addition to financial markets, our approach can also be applied to other complex systems and we take the earthquake as an example to demonstrate the applicability of our approach. We further propose a toy model which can mimic the stylized facts in financial markets. This model could be interpreted as the accumulation effect of the news impact on the price fluctuation in a financial market and can be viewed as a first step towards understanding the complex market behavior.

Suggested Citation

  • Tseng, Jie-Jun & Li, Sai-Ping, 2012. "Quantifying volatility clustering in financial time series," International Review of Financial Analysis, Elsevier, vol. 23(C), pages 11-19.
  • Handle: RePEc:eee:finana:v:23:y:2012:i:c:p:11-19 DOI: 10.1016/j.irfa.2011.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521911000780
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie-Jun Tseng & Sai-Ping Li, 2010. "Asset returns and volatility clustering in financial time series," Papers 1002.0284, arXiv.org, revised Apr 2011.
    2. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. M. Cristelli & L. Pietronero & A. Zaccaria, 2011. "Critical Overview of Agent-Based Models for Economics," Papers 1101.1847, arXiv.org.
    5. Tseng, Jie-Jun & Li, Sai-Ping, 2011. "Asset returns and volatility clustering in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1300-1314.
    6. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    7. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    8. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters,in: THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78 World Scientific Publishing Co. Pte. Ltd..
    9. Pelagatti Matteo M, 2009. "Modelling Good and Bad Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-20, March.
    10. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philippas, Nikolaos & Economou, Fotini & Babalos, Vassilios & Kostakis, Alexandros, 2013. "Herding behavior in REITs: Novel tests and the role of financial crisis," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 166-174.
    2. Cao, Guangxi & Zhang, Minjia & Li, Qingchen, 2017. "Volatility-constrained multifractal detrended cross-correlation analysis: Cross-correlation among Mainland China, US, and Hong Kong stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 67-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:23:y:2012:i:c:p:11-19. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.