IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1002.0284.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Asset returns and volatility clustering in financial time series

Author

Listed:
  • Jie-Jun Tseng
  • Sai-Ping Li

Abstract

An analysis of the stylized facts in financial time series is carried out. We find that, instead of the heavy tails in asset return distributions, the slow decay behaviour in autocorrelation functions of absolute returns is actually directly related to the degree of clustering of large fluctuations within the financial time series. We also introduce an index to quantitatively measure the clustering behaviour of fluctuations in these time series and show that big losses in financial markets usually lump more severely than big gains. We further give examples to demonstrate that comparing to conventional methods, our index enables one to extract more information from the financial time series.

Suggested Citation

  • Jie-Jun Tseng & Sai-Ping Li, 2010. "Asset returns and volatility clustering in financial time series," Papers 1002.0284, arXiv.org, revised Apr 2011.
  • Handle: RePEc:arx:papers:1002.0284
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1002.0284
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2009. "Econophysics: Empirical facts and agent-based models," Papers 0909.1974, arXiv.org, revised Jun 2010.
    2. repec:cup:cbooks:9780521819169 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suo, Yuan-Yuan & Wang, Dong-Hua & Li, Sai-Ping, 2015. "Risk estimation of CSI 300 index spot and futures in China from a new perspective," Economic Modelling, Elsevier, vol. 49(C), pages 344-353.
    2. Jung, Sean S. & Chang, Woojin, 2016. "Clustering stocks using partial correlation coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 410-420.
    3. Andrea Giuseppe Di Iura & Giulia Terenzi, 2021. "A Bayesian analysis of gain-loss asymmetry," Papers 2104.06044, arXiv.org.
    4. Venelina Nikolova & Juan E. Trinidad Segovia & Manuel Fernández-Martínez & Miguel Angel Sánchez-Granero, 2020. "A Novel Methodology to Calculate the Probability of Volatility Clusters in Financial Series: An Application to Cryptocurrency Markets," Mathematics, MDPI, vol. 8(8), pages 1-15, July.
    5. D’Urso, Pierpaolo & Cappelli, Carmela & Di Lallo, Dario & Massari, Riccardo, 2013. "Clustering of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2114-2129.
    6. An, Sufang & Gao, Xiangyun & Jiang, Meihui & Sun, Xiaoqi, 2018. "Multivariate financial time series in the light of complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1241-1255.
    7. Ross, Gordon J., 2013. "Modelling financial volatility in the presence of abrupt changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 350-360.
    8. Michele Berardi, 2016. "Endogenous time-varying risk aversion and asset returns," Journal of Evolutionary Economics, Springer, vol. 26(3), pages 581-601, July.
    9. Yang, ChunXia & Hu, Sen & Xia, BingYing, 2012. "The endogenous dynamics of financial markets: Interaction and information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3513-3525.
    10. Tseng, Jie-Jun & Li, Sai-Ping, 2012. "Quantifying volatility clustering in financial time series," International Review of Financial Analysis, Elsevier, vol. 23(C), pages 11-19.
    11. Cao, Guangxi & Zhang, Minjia & Li, Qingchen, 2017. "Volatility-constrained multifractal detrended cross-correlation analysis: Cross-correlation among Mainland China, US, and Hong Kong stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 67-76.
    12. Andrea Di Iura & Giulia Terenzi, 2022. "A Bayesian analysis of gain-loss asymmetry," SN Business & Economics, Springer, vol. 2(5), pages 1-23, May.
    13. Rodríguez-Martínez, C.M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2021. "A multi-scale symmetry analysis of uninterrupted trends returns in daily financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    14. María Nieves López-García & Miguel Angel Sánchez-Granero & Juan Evangelista Trinidad-Segovia & Antonio Manuel Puertas & Francisco Javier De las Nieves, 2021. "Volatility Co-Movement in Stock Markets," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    15. Kim, Kyungwon, 2013. "Modeling financial crisis period: A volatility perspective of Credit Default Swap market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4977-4988.
    16. C. M. Rodr'iguez-Mart'inez & H. F. Coronel-Brizio & A. R. Hern'andez-Montoya, 2019. "A multi-scale symmetry analysis of uninterrupted trends returns of daily financial indices," Papers 1908.11204, arXiv.org.
    17. Trinidad Segovia, J.E. & Fernández-Martínez, M. & Sánchez-Granero, M.A., 2019. "A novel approach to detect volatility clusters in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    18. Chunxia, Yang & Bingying, Xia & Sen, Hu & Rui, Wang, 2012. "A study of the interplay between the structure variation and fluctuations of the Shanghai stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3198-3205.
    19. Xing, Yani & Wang, Jun, 2019. "Statistical volatility duration and complexity of financial dynamics on Sierpinski gasket lattice percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 234-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kylie-Anne Richards & Gareth W. Peters & William Dunsmuir, 2015. "Heavy-tailed features and dependence in limit order book volume profiles in futures markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-56.
    2. Eliazar, Iddo, 2017. "Inequality spectra," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 824-847.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1002.0284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.