IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i20p4977-4988.html
   My bibliography  Save this article

Modeling financial crisis period: A volatility perspective of Credit Default Swap market

Author

Listed:
  • Kim, Kyungwon

Abstract

The volatility of financial markets is often assumed constant, but phenomena such as volatility clustering and jumps in volatility suggest that this assumption is rarely true. Numerous studies have been conducted to investigate the jump or breakpoint of the volatility phenomenon, and their findings have been applied in modeling volatility. However, few studies address the issue from a practical point of view. Specifically, a financial crisis accompanied by markedly increased volatility can be approached from this perspective to suggest the persistence or termination of a crisis. This paper develops the ICSS-CRISIS algorithm, a new approach to identify a crisis period along with the conditions for the ICSS algorithm which represents the structural breakpoints of volatility. This algorithm recommends a guideline to determine whether an existing crisis in the market resulted from financial volatility, was terminated, or is continuing. The method is tested along with the ICSS algorithm to prove the effectiveness of Credit Default Swap index data.

Suggested Citation

  • Kim, Kyungwon, 2013. "Modeling financial crisis period: A volatility perspective of Credit Default Swap market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4977-4988.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:20:p:4977-4988
    DOI: 10.1016/j.physa.2013.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113005141
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie-Jun Tseng & Sai-Ping Li, 2010. "Asset returns and volatility clustering in financial time series," Papers 1002.0284, arXiv.org, revised Apr 2011.
    2. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    3. Aggarwal, Reena & Inclan, Carla & Leal, Ricardo, 1999. "Volatility in Emerging Stock Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(01), pages 33-55, March.
    4. Donald Lien & Y. K. Tse & Albert Tsui, 2002. "Evaluating the hedging performance of the constant-correlation GARCH model," Applied Financial Economics, Taylor & Francis Journals, vol. 12(11), pages 791-798.
    5. Tseng, Jie-Jun & Li, Sai-Ping, 2011. "Asset returns and volatility clustering in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1300-1314.
    6. Covarrubias, Guillermo & Ewing, Bradley T. & Hein, Scott E. & Thompson, Mark A., 2006. "Modeling volatility changes in the 10-year Treasury," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 737-744.
    7. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    8. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    9. Koichi Maekawa & Sangyeol & Lee, 2004. "The Cusum Test for Parameter Change in Regression with ARCH Errors," Econometric Society 2004 Far Eastern Meetings 606, Econometric Society.
    10. He, Zhongfang & Maheu, John M., 2010. "Real time detection of structural breaks in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
    11. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    12. Berry Wilson & Reena Aggarwal & Carla Inclan, 1996. "Detecting volatility changes across the oil sector," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(3), pages 313-330, May.
    13. Farooq Malik & Bradley Ewing & James Payne, 2005. "Measuring volatility persistence in the presence of sudden changes in the variance of Canadian stock returns," Canadian Journal of Economics, Canadian Economics Association, vol. 38(3), pages 1037-1056, August.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. Kroner, Kenneth F. & Lastrapes, William D., 1993. "The impact of exchange rate volatility on international trade: Reduced form estimates using the GARCH-in-mean model," Journal of International Money and Finance, Elsevier, vol. 12(3), pages 298-318, June.
    16. Lamoureux, Christopher G & Lastrapes, William D, 1990. " Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    17. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    18. Susmel, Raul, 2000. "Switching Volatility in Private International Equity Markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 5(4), pages 265-283, October.
    19. oh, Gabjin & Kim, Seunghwan & Eom, Cheoljun, 2008. "Long-term memory and volatility clustering in high-frequency price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1247-1254.
    20. Kang, Sang Hoon & Cho, Hwan-Gue & Yoon, Seong-Min, 2009. "Modeling sudden volatility changes: Evidence from Japanese and Korean stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3543-3550.
    21. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2011. "Structural changes and volatility transmission in crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4317-4324.
    22. Fisher, Lawrence, 1984. " Contingent Claims Analysis of Corporate Capital Structures: An Empirical Investigation," Journal of Finance, American Finance Association, vol. 39(3), pages 625-627, July.
    23. Duan Wang & Boris Podobnik & Davor Horvati'c & H. Eugene Stanley, 2011. "Quantifying and Modeling Long-Range Cross-Correlations in Multiple Time Series with Applications to World Stock Indices," Papers 1102.2240, arXiv.org.
    24. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    25. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    26. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
    27. Donald Lien & Xiangdong Luo, 1994. "Multiperiod hedging in the presence of conditional heteroskedasticity," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 14(8), pages 927-955, December.
    28. Robert J. Myers, 1991. "Estimating time‐varying optimal hedge ratios on futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(1), pages 39-53, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:phsmap:v:482:y:2017:i:c:p:638-648 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:20:p:4977-4988. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.