IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v369y2006i2p737-744.html
   My bibliography  Save this article

Modeling volatility changes in the 10-year Treasury

Author

Listed:
  • Covarrubias, Guillermo
  • Ewing, Bradley T.
  • Hein, Scott E.
  • Thompson, Mark A.

Abstract

This paper examines the daily volatility of changes in the 10-year Treasury note utilizing the iterated cumulative sums of squares algorithm [C. Inclan, G. Tiao, Use of cumulative sums of squares for retrospective detection of changes of variance, J. Am. Stat. Assoc. 89 (1994) 913–923]. The ICSS algorithm can detect regime shifts in the volatility of the interest rate changes. A general model allows for endogenously determined changes in variance while the more restrictive model forces the variance to follow the same process throughout the sample period. A comparison of the out-of-sample volatility forecasting performance of two competing models is made using asymmetric error measures. The asymmetric error statistics penalize models for under- or over-predicting volatility. The results shed light on the importance of ignoring volatility regime shifts when performing out-of-sample forecasts. The findings are important to financial market participants who require accurate forecasts of future volatility in order to implement and evaluate asset performance.

Suggested Citation

  • Covarrubias, Guillermo & Ewing, Bradley T. & Hein, Scott E. & Thompson, Mark A., 2006. "Modeling volatility changes in the 10-year Treasury," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 737-744.
  • Handle: RePEc:eee:phsmap:v:369:y:2006:i:2:p:737-744 DOI: 10.1016/j.physa.2006.01.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437106001397
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Sudipto Sarkar & Mohamed Ariff, 2002. "The effect of interest rate volatility on treasury yields," Applied Financial Economics, Taylor & Francis Journals, vol. 12(9), pages 667-672.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Lastrapes, William D, 1989. "Exchange Rate Volatility and U.S. Monetary Policy: An ARCH Application," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 21(1), pages 66-77, February.
    5. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    6. Aggarwal, Reena & Inclan, Carla & Leal, Ricardo, 1999. "Volatility in Emerging Stock Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(01), pages 33-55, March.
    7. Malik, Farooq, 2003. "Sudden changes in variance and volatility persistence in foreign exchange markets," Journal of Multinational Financial Management, Elsevier, vol. 13(3), pages 217-230, July.
    8. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    9. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, pages 267-290.
    10. Pindyck, Robert S, 1984. "Risk, Inflation, and the Stock Market," American Economic Review, American Economic Association, vol. 74(3), pages 335-351, June.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, pages 307-327.
    12. Di Matteo, T. & Airoldi, M. & Scalas, E., 2004. "On pricing of interest rate derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 339(1), pages 189-196.
    13. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-1153, December.
    14. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    15. Krivoruchenko, M.I. & Alessio, E. & Frappietro, V. & Streckert, L.J., 2004. "Modeling stylized facts for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 263-266.
    16. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    17. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    18. Ederington, Louis H & Lee, Jae Ha, 1993. " How Markets Process Information: News Releases and Volatility," Journal of Finance, American Finance Association, vol. 48(4), pages 1161-1191, September.
    19. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    20. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    21. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    22. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    23. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    24. M. I. Krivoruchenko & E. Alessio & V. Frappietro & L. J. Streckert, 2004. "Modeling stylized facts for financial time series," Papers cond-mat/0401009, arXiv.org, revised Nov 2004.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Go Tamakoshi & Shigeyuki Hamori, 2014. "Greek sovereign bond index, volatility, and structural breaks," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 38(4), pages 687-697, October.
    2. Bruce Q. Budd, 2016. "Structural break tests and the Greek sovereign debt crisis: revisited," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 40(3), pages 607-622, July.
    3. Viviana Fernandez, 2007. "Stock Market Turmoil: Worldwide Effects of Middle East Conflicts," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 43(3), pages 58-102, June.
    4. Fernandez, Viviana, 2009. "The behavior of stock returns in the mining industry following the Iraq war," Research in International Business and Finance, Elsevier, vol. 23(3), pages 274-292, September.
    5. Viviana Fernandez, 2007. "Stock Market Turmoil: Worldwide Effects of Middle East Conflicts," Emerging Markets Finance and Trade, M.E. Sharpe, Inc., vol. 43(3), pages 58-102, June.
    6. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2011. "Structural changes and volatility transmission in crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4317-4324.
    7. Kim, Kyungwon, 2013. "Modeling financial crisis period: A volatility perspective of Credit Default Swap market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4977-4988.
    8. Ewing, Bradley T. & Thompson, Mark A., 2008. "Industrial production, volatility, and the supply chain," International Journal of Production Economics, Elsevier, vol. 115(2), pages 553-558, October.
    9. Gordon J. Ross, 2012. "Modeling Financial Volatility in the Presence of Abrupt Changes," Papers 1212.6016, arXiv.org.
    10. Ross, Gordon J., 2013. "Modelling financial volatility in the presence of abrupt changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(2), pages 350-360.
    11. Bhuyan, Rafiqul & Robbani, Mohammad G. & Talukdar, Bakhtear & Jain, Ajeet, 2016. "Information transmission and dynamics of stock price movements: An empirical analysis of BRICS and US stock markets," International Review of Economics & Finance, Elsevier, vol. 46(C), pages 180-195.
    12. Kang, Sang Hoon & Cho, Hwan-Gue & Yoon, Seong-Min, 2009. "Modeling sudden volatility changes: Evidence from Japanese and Korean stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3543-3550.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:369:y:2006:i:2:p:737-744. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.