IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0401009.html
   My bibliography  Save this paper

Modeling stylized facts for financial time series

Author

Listed:
  • M. I. Krivoruchenko
  • E. Alessio
  • V. Frappietro
  • L. J. Streckert

Abstract

Multivariate probability density functions of returns are constructed in order to model the empirical behavior of returns in a financial time series. They describe the well-established deviations from the Gaussian random walk, such as an approximate scaling and heavy tails of the return distributions, long-ranged volatility-volatility correlations (volatility clustering) and return-volatility correlations (leverage effect). The model is tested successfully to fit joint distributions of the 100+ years of daily price returns of the Dow Jones 30 Industrial Average.

Suggested Citation

  • M. I. Krivoruchenko & E. Alessio & V. Frappietro & L. J. Streckert, 2004. "Modeling stylized facts for financial time series," Papers cond-mat/0401009, arXiv.org, revised Nov 2004.
  • Handle: RePEc:arx:papers:cond-mat/0401009
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0401009
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hwang, Soosung & Satchell, Stephen E, 1999. "Modelling Emerging Market Risk Premia Using Higher Moments," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 4(4), pages 271-296, October.
    2. Lux, Thomas & Sornette, Didier, 2002. "On Rational Bubbles and Fat Tails," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(3), pages 589-610, August.
    3. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    4. Jondeau, Eric & Rockinger, Michael, 2003. "Testing for differences in the tails of stock-market returns," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 559-581, December.
    5. Andersson, Michael K. & Eklund, Bruno & Lyhagen, Johan, 1999. "A simple linear time series model with misleading nonlinear properties," Economics Letters, Elsevier, vol. 65(3), pages 281-284, December.
    6. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Papers cond-mat/9705087, arXiv.org.
    7. Ramchand, Latha & Susmel, Raul, 1998. "Volatility and cross correlation across major stock markets," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 397-416, October.
    8. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    9. Rubinstein, Mark E., 1973. "The Fundamental Theorem of Parameter-Preference Security Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(01), pages 61-69, January.
    10. J-F. Muzy & D. Sornette & J. delour & A. Arneodo, 2001. "Multifractal returns and hierarchical portfolio theory," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 131-148.
    11. Fama, Eugene F & French, Kenneth R, 1996. " Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
    12. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    13. Sornette, Didier, 1998. "Linear stochastic dynamics with nonlinear fractal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 250(1), pages 295-314.
    14. J. Doyne Farmer, 1999. "Physicists Attempt to Scale the Ivory Towers of Finance," Working Papers 99-10-073, Santa Fe Institute.
    15. Phillip Kearns & Adrian Pagan, 1997. "Estimating The Density Tail Index For Financial Time Series," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 171-175, May.
    16. Y. Malevergne & D. Sornette, 2001. "Multi-dimensional rational bubbles and fat tails," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 533-541.
    17. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    18. Damien Challet & Matteo Marsili, 2002. "Criticality and finite size effects in a simple realistic model of stock market," Papers cond-mat/0210549, arXiv.org, revised Dec 2002.
    19. Ofer Biham & Zhi-Feng Huang & Ofer Malcai & Sorin Solomon, 2002. "Long-Time Fluctuations in a Dynamical Model of Stock Market Indices," Papers cond-mat/0208464, arXiv.org.
    20. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    21. Michel M. Dacorogna, & Ulrich A. Muller & Olivier V. Pictet & Casper De Vries,, "undated". "The Distribution of Extremal Foreign Exchange Rate Returns in Extremely Large Data Sets," Working Papers 1992-10-22, Olsen and Associates.
    22. Richard B. Olsen & Ulrich A. Müller & Michel M. Dacorogna & Olivier V. Pictet & Rakhal R. Davé & Dominique M. Guillaume, 1997. "From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 95-129.
    23. Xavier Gabaix, 1999. "Zipf's Law for Cities: An Explanation," The Quarterly Journal of Economics, Oxford University Press, vol. 114(3), pages 739-767.
    24. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    25. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    26. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    27. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    28. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    29. Engle, Robert F., 1984. "Wald, likelihood ratio, and Lagrange multiplier tests in econometrics," Handbook of Econometrics,in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 13, pages 775-826 Elsevier.
    30. Y. Malevergne & D. Sornette, 2002. "Multi-Moments Method for Portfolio Management: Generalized Capital Asset Pricing Model in Homogeneous and Heterogeneous markets," Papers cond-mat/0207475, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kovačić, Zlatko, 2007. "Forecasting volatility: Evidence from the Macedonian stock exchange," MPRA Paper 5319, University Library of Munich, Germany.
    2. Covarrubias, Guillermo & Ewing, Bradley T. & Hein, Scott E. & Thompson, Mark A., 2006. "Modeling volatility changes in the 10-year Treasury," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 737-744.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0401009. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.