IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v472y2017icp67-76.html
   My bibliography  Save this article

Volatility-constrained multifractal detrended cross-correlation analysis: Cross-correlation among Mainland China, US, and Hong Kong stock markets

Author

Listed:
  • Cao, Guangxi
  • Zhang, Minjia
  • Li, Qingchen

Abstract

This study focuses on multifractal detrended cross-correlation analysis of the different volatility intervals of Mainland China, US, and Hong Kong stock markets. A volatility-constrained multifractal detrended cross-correlation analysis (VC-MF-DCCA) method is proposed to study the volatility conductivity of Mainland China, US, and Hong Kong stock markets. Empirical results indicate that fluctuation may be related to important activities in real markets. The Hang Seng Index (HSI) stock market is more influential than the Shanghai Composite Index (SCI) stock market. Furthermore, the SCI stock market is more influential than the Dow Jones Industrial Average stock market. The conductivity between the HSI and SCI stock markets is the strongest. HSI was the most influential market in the large fluctuation interval of 1991 to 2014. The autoregressive fractionally integrated moving average method is used to verify the validity of VC-MF-DCCA. Results show that VC-MF-DCCA is effective.

Suggested Citation

  • Cao, Guangxi & Zhang, Minjia & Li, Qingchen, 2017. "Volatility-constrained multifractal detrended cross-correlation analysis: Cross-correlation among Mainland China, US, and Hong Kong stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 67-76.
  • Handle: RePEc:eee:phsmap:v:472:y:2017:i:c:p:67-76
    DOI: 10.1016/j.physa.2017.01.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117300250
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.01.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ning, Cathy & Xu, Dinghai & Wirjanto, Tony S., 2015. "Is volatility clustering of asset returns asymmetric?," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 62-76.
    2. Jie-Jun Tseng & Sai-Ping Li, 2010. "Asset returns and volatility clustering in financial time series," Papers 1002.0284, arXiv.org, revised Apr 2011.
    3. Tseng, Jie-Jun & Li, Sai-Ping, 2012. "Quantifying volatility clustering in financial time series," International Review of Financial Analysis, Elsevier, vol. 23(C), pages 11-19.
    4. Cao, Guangxi & Zhang, Minjia, 2015. "Extreme values in the Chinese and American stock markets based on detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 25-35.
    5. Wen-Jie Xie & Zhi-Qiang Jiang & Gao-Feng Gu & Xiong Xiong & Wei-Xing Zhou, 2015. "Joint multifractal analysis based on the partition function approach: Analytical analysis, numerical simulation and empirical application," Papers 1509.05952, arXiv.org.
    6. Yin, Yi & Shang, Pengjian, 2013. "Modified DFA and DCCA approach for quantifying the multiscale correlation structure of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6442-6457.
    7. Chen, Jian & Jiang, Fuwei & Li, Hongyi & Xu, Weidong, 2016. "Chinese stock market volatility and the role of U.S. economic variables," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 70-83.
    8. Cao, Guangxi & Han, Yan & Cui, Weijun & Guo, Yu, 2014. "Multifractal detrended cross-correlations between the CSI 300 index futures and the spot markets based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 308-320.
    9. Wang, Dong-Hua & Suo, Yuan-Yuan & Yu, Xiao-Wen & Lei, Man, 2013. "Price–volume cross-correlation analysis of CSI300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1172-1179.
    10. Ochiai, Tomoshiro & Nacher, Jose C., 2014. "Volatility-constrained correlation identifies the directionality of the influence between Japan’s Nikkei 225 and other financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 364-375.
    11. Shi, Wenbin & Shang, Pengjian & Wang, Jing & Lin, Aijing, 2014. "Multiscale multifractal detrended cross-correlation analysis of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 35-44.
    12. Tseng, Jie-Jun & Li, Sai-Ping, 2011. "Asset returns and volatility clustering in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1300-1314.
    13. Bentes, Sónia R. & Menezes, Rui & Mendes, Diana A., 2008. "Long memory and volatility clustering: Is the empirical evidence consistent across stock markets?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3826-3830.
    14. Zhang, Chen & Ni, Zhiwei & Ni, Liping, 2015. "Multifractal detrended cross-correlation analysis between PM2.5 and meteorological factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 114-123.
    15. Pal, Mayukha & Madhusudana Rao, P. & Manimaran, P., 2014. "Multifractal detrended cross-correlation analysis on gold, crude oil and foreign exchange rate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 452-460.
    16. Xue, Yi & Gençay, Ramazan, 2012. "Trading frequency and volatility clustering," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 760-773.
    17. Morales, Lucía & Andreosso-O’Callaghan, Bernadette, 2012. "The current global financial crisis: Do Asian stock markets show contagion or interdependence effects?," Journal of Asian Economics, Elsevier, vol. 23(6), pages 616-626.
    18. Jun-ichi Maskawa & Joshin Murai & Koji Kuroda, 2013. "Market-wide price co-movement around crashes in the Tokyo Stock Exchange," Papers 1306.2188, arXiv.org.
    19. Duan Wang & Boris Podobnik & Davor Horvati'c & H. Eugene Stanley, 2011. "Quantifying and Modeling Long-Range Cross-Correlations in Multiple Time Series with Applications to World Stock Indices," Papers 1102.2240, arXiv.org.
    20. He, Ling-Yun & Chen, Shu-Peng, 2011. "Multifractal Detrended Cross-Correlation Analysis of agricultural futures markets," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 355-361.
    21. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    22. Ladislav Kristoufek, 2012. "Multifractal Height Cross-Correlation Analysis: A New Method for Analyzing Long-Range Cross-Correlations," Papers 1201.3473, arXiv.org, revised Jan 2012.
    23. Gao-Feng Gu & Wei-Xing Zhou, 2010. "Detrending moving average algorithm for multifractals," Papers 1005.0877, arXiv.org, revised Jun 2010.
    24. Pal, Mayukha & Kiran, V. Satya & Rao, P. Madhusudana & Manimaran, P., 2016. "Multifractal detrended cross-correlation analysis of genome sequences using chaos-game representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 288-293.
    25. Zhi-Qiang Jiang & Wei-Xing Zhou, 2011. "Multifractal detrending moving average cross-correlation analysis," Papers 1103.2577, arXiv.org, revised Mar 2011.
    26. Zhuang, Xiaoyang & Wei, Yu & Zhang, Bangzheng, 2014. "Multifractal detrended cross-correlation analysis of carbon and crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 113-125.
    27. Xi-Yuan Qian & Ya-Min Liu & Zhi-Qiang Jiang & Boris Podobnik & Wei-Xing Zhou & H. Eugene Stanley, 2015. "Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces," Papers 1504.02435, arXiv.org, revised Apr 2015.
    28. Zhao, Xiaojun & Shang, Pengjian & Lin, Aijing & Chen, Gang, 2011. "Multifractal Fourier detrended cross-correlation analysis of traffic signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3670-3678.
    29. Zebende, G.F., 2011. "DCCA cross-correlation coefficient: Quantifying level of cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 614-618.
    30. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    31. Cao, Guangxi & Cao, Jie & Xu, Longbing & He, LingYun, 2014. "Detrended cross-correlation analysis approach for assessing asymmetric multifractal detrended cross-correlations and their application to the Chinese financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 460-469.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruan, Qingsong & Yang, Haiquan & Lv, Dayong & Zhang, Shuhua, 2018. "Cross-correlations between individual investor sentiment and Chinese stock market return: New perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 243-256.
    2. Guo, Yaoqi & Yu, Zhuling & Yu, Chenxi & Cheng, Hui & Chen, Weixun & Zhang, Hongwei, 2021. "Asymmetric multifractal features of the price–volume correlation in China’s gold futures market based on MF-ADCCA," Research in International Business and Finance, Elsevier, vol. 58(C).
    3. Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
    4. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & You, Kefei, 2021. "Global and Regional Financial Integration in Emerging Asia: Evidence from Stock Markets," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 36(2), pages 185-202.
    5. Guglielmo Maria Caporale & Kefei You, 2017. "Stock Market Integration in Asia: Global or Regional? Evidence from Industry Level Panel Convergence Tests," CESifo Working Paper Series 6494, CESifo.
    6. Shi, Yujie & Wang, Liming & Ke, Jian, 2021. "Does the US-China trade war affect co-movements between US and Chinese stock markets?," Research in International Business and Finance, Elsevier, vol. 58(C).
    7. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    8. Kristjanpoller, Werner & Minutolo, Marcel C., 2021. "Asymmetric multi-fractal cross-correlations of the price of electricity in the US with crude oil and the natural gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    9. Zhou, Yaping & Lu, Baoqun & Lv, Dayong & Ruan, Qingsong, 2019. "The informativeness of options-trading activities: Non-linear analysis based on MF-DCCA and Granger test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    10. Sun, Limei & Xiang, Meiqi & Shen, Qing, 2020. "A comparative study on the volatility of EU and China’s carbon emission permits trading markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    11. Caporale, Guglielmo Maria & You, Kefei & Chen, Lei, 2019. "Global and regional stock market integration in Asia: A panel convergence approach," International Review of Financial Analysis, Elsevier, vol. 65(C).
    12. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    13. Zhu, Pengfei & Tang, Yong & Wei, Yu & Dai, Yimin, 2019. "Portfolio strategy of International crude oil markets: A study based on multiwavelet denoising-integration MF-DCCA method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Guangxi & Han, Yan & Li, Qingchen & Xu, Wei, 2017. "Asymmetric MF-DCCA method based on risk conduction and its application in the Chinese and foreign stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 119-130.
    2. Chatterjee, Sucharita & Ghosh, Dipak, 2021. "Impact of Global Warming on SENSEX fluctuations — A study based on Multifractal detrended cross correlation analysis between the temperature anomalies and the SENSEX fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    3. Chatterjee, Sucharita, 2020. "Analysis of the human gait rhythm in Neurodegenerative disease: A multifractal approach using Multifractal detrended cross correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Xi, Caiping & Zhang, Shuning & Xiong, Gang & Zhao, Huichang & Yang, Yonghong, 2017. "The application of the multifractal cross-correlation analysis methods in radar target detection within sea clutter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 839-854.
    5. Chen, Yuwen & Zheng, Tingting, 2017. "Asymmetric joint multifractal analysis in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 10-19.
    6. Manimaran, P. & Narayana, A.C., 2018. "Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 228-235.
    7. Xi, Caiping & Zhang, Shuning & Xiong, Gang & Zhao, Huichang & Yang, Yonghong, 2017. "Two-dimensional multifractal cross-correlation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 59-69.
    8. Pal, Mayukha & Kiran, V. Satya & Rao, P. Madhusudana & Manimaran, P., 2016. "Multifractal detrended cross-correlation analysis of genome sequences using chaos-game representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 288-293.
    9. Zebende, G.F. & da Silva, M.F. & Machado Filho, A., 2013. "DCCA cross-correlation coefficient differentiation: Theoretical and practical approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1756-1761.
    10. Yao, Can-Zhong & Lin, Ji-Nan & Zheng, Xu-Zhou, 2017. "Coupling detrended fluctuation analysis for multiple warehouse-out behavioral sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 75-90.
    11. Fan, Xiaoqian & Yuan, Ying & Zhuang, Xintian & Jin, Xiu, 2017. "Long memory of abnormal investor attention and the cross-correlations between abnormal investor attention and trading volume, volatility respectively," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 323-333.
    12. Lu, Xinsheng & Sun, Xinxin & Ge, Jintian, 2017. "Dynamic relationship between Japanese Yen exchange rates and market anxiety: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 144-161.
    13. Gajardo, Gabriel & Kristjanpoller, Werner, 2017. "Asymmetric multifractal cross-correlations and time varying features between Latin-American stock market indices and crude oil market," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 121-128.
    14. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    15. Ruan, Qingsong & Yang, Haiquan & Lv, Dayong & Zhang, Shuhua, 2018. "Cross-correlations between individual investor sentiment and Chinese stock market return: New perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 243-256.
    16. Guo, Yaoqi & Yu, Zhuling & Yu, Chenxi & Cheng, Hui & Chen, Weixun & Zhang, Hongwei, 2021. "Asymmetric multifractal features of the price–volume correlation in China’s gold futures market based on MF-ADCCA," Research in International Business and Finance, Elsevier, vol. 58(C).
    17. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    18. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    19. Xi, Caiping & Zhang, Shunning & Xiong, Gang & Zhao, Huichang, 2016. "A comparative study of two-dimensional multifractal detrended fluctuation analysis and two-dimensional multifractal detrended moving average algorithm to estimate the multifractal spectrum," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 34-50.
    20. Li, Wei & Lu, Xinsheng & Ren, Yongping & Zhou, Ying, 2018. "Dynamic relationship between RMB exchange rate index and stock market liquidity: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 726-739.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:472:y:2017:i:c:p:67-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.