IDEAS home Printed from https://ideas.repec.org/r/eee/transb/v24y1990i3p209-228.html
   My bibliography  Save this item

Departure time and route choice for the morning commute

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Fiems, Dieter & Prabhu, Balakrishna & De Turck, Koen, 2019. "Travel times, rational queueing and the macroscopic fundamental diagram of traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 412-421.
  2. B. G. Heydecker & J. D. Addison, 2005. "Analysis of Dynamic Traffic Equilibrium with Departure Time Choice," Transportation Science, INFORMS, vol. 39(1), pages 39-57, February.
  3. Liu, Yang & Nie, Yu (Marco), 2011. "Morning commute problem considering route choice, user heterogeneity and alternative system optima," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 619-642.
  4. Bellei, Giuseppe & Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2006. "A demand model with departure time choice for within-day dynamic traffic assignment," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1557-1576, December.
  5. Ma, Rui & Zhang, Michael & Kleeman, Michael, 2019. "A Study of the Integrated Parking and Ridesharing Pricing/Incentives and their Social and Environmental Impacts in Metropolitan Areas," Institute of Transportation Studies, Working Paper Series qt2t55g89p, Institute of Transportation Studies, UC Davis.
  6. Wuping Xin & David Levinson, 2015. "Stochastic Congestion and Pricing Model with Endogenous Departure Time Selection and Heterogeneous Travelers," Mathematical Population Studies, Taylor & Francis Journals, vol. 22(1), pages 37-52, March.
  7. Gonzales, Eric J. & Daganzo, Carlos F., 2013. "The evening commute with cars and transit: Duality results and user equilibrium for the combined morning and evening peaks," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 286-299.
  8. Sibdari, Soheil & Jeihani, Mansoureh, 2009. "On the Impact of HOT Lane Tolling Strategies on Total Traffic Level," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 48(3).
  9. Zhang, Michael & Shen, Wei & Nie, Yu & Ma, Jingtao, 2008. "Integrated Construction Zone Traffic Management," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1bd50918, Institute of Transportation Studies, UC Berkeley.
  10. Raphaël Lamotte & André de Palma & Nikolas Geroliminis, 2016. "Sharing the road: the economics of autonomous vehicles," Working Papers hal-01281425, HAL.
  11. Luce Brotcorne & Martine Labbé & Patrice Marcotte & Gilles Savard, 2001. "A Bilevel Model for Toll Optimization on a Multicommodity Transportation Network," Transportation Science, INFORMS, vol. 35(4), pages 345-358, November.
  12. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
  13. Zheng, Nan & Waraich, Rashid A. & Axhausen, Kay W. & Geroliminis, Nikolas, 2012. "A dynamic cordon pricing scheme combining the Macroscopic Fundamental Diagram and an agent-based traffic model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1291-1303.
  14. Gonzales, Eric J. & Daganzo, Carlos F., 2012. "Morning commute with competing modes and distributed demand: User equilibrium, system optimum, and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1519-1534.
  15. Dong Liu & Mei‐Po Kwan, 2020. "Measuring Job Accessibility Through Integrating Travel Time, Transit Fare And Income: A Study Of The Chicago Metropolitan Area," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 111(4), pages 671-685, September.
  16. Ge, Qian & Han, Ke & Liu, Xiaobo, 2021. "Matching and routing for shared autonomous vehicles in congestible network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
  17. Zheng, Nan & Geroliminis, Nikolas, 2020. "Area-based equitable pricing strategies for multimodal urban networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 357-374.
  18. Loukas Dimitriou & Theodore Tsekeris, 2009. "Evolutionary game-theoretic model for dynamic congestion pricing in multi-class traffic networks," Netnomics, Springer, vol. 10(1), pages 103-121, April.
  19. Erik Verhoef, 1997. "Time-Varying Tolls in a Dynamic Model of Road Traffic Congestion with Elastic Demand," Tinbergen Institute Discussion Papers 97-028/3, Tinbergen Institute.
  20. Khan, Mubassira & Machemehl, Randy, 2017. "Commercial vehicles time of day choice behavior in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 68-83.
  21. Denant-Boèmont, L. & Petiot, R., 2003. "Information value and sequential decision-making in a transport setting: an experimental study," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 365-386, May.
  22. Kobayashi, Kiyoshi & Do, Myungsik, 2005. "The informational impacts of congestion tolls upon route traffic demands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 651-670.
  23. Pavithra Parthasarathi & Anupam Srivastava & Nikolas Geroliminis & David Levinson, 2011. "The importance of being early," Transportation, Springer, vol. 38(2), pages 227-247, March.
  24. Laval, Jorge A. & Cho, Hyun W. & Muñoz, Juan C. & Yin, Yafeng, 2015. "Real-time congestion pricing strategies for toll facilities," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 19-31.
  25. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
  26. Khattak, Asad & Al-deek, Haitham & Thananjeyan, Paramsothy, 1994. "A Combined Traveler Behavior And System Performance Model With ATIS," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt26m3r4s0, Institute of Transportation Studies, UC Berkeley.
  27. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
  28. Li, Qiaoru & Zhang, Zhe & Li, Kun & Chen, Liang & Wei, Zhenlin & Zhang, Jingchun, 2020. "Evolutionary dynamics of traveling behavior in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
  29. Wang, David Z.W. & Du, Bo, 2016. "Continuum modelling of spatial and dynamic equilibrium in a travel corridor with heterogeneous commuters—A partial differential complementarity system approach," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 1-18.
  30. Robin Lindsey & André de Palma, 1997. "Private Toll Roads: A Dynamic Equilibrium Analysis," Tinbergen Institute Discussion Papers 97-057/3, Tinbergen Institute.
  31. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
  32. Wu, Wen-Xiang & Huang, Hai-Jun, 2015. "An ordinary differential equation formulation of the bottleneck model with user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 34-58.
  33. Yao, Tao & Wei, Mike Mingcheng & Zhang, Bo & Friesz, Terry, 2012. "Congestion derivatives for a traffic bottleneck with heterogeneous commuters," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1454-1473.
  34. Gonzales, Eric Justin, 2011. "Allocation of Space and the Costs of Multimodal Transport in Cities," University of California Transportation Center, Working Papers qt7s28n4nj, University of California Transportation Center.
  35. Liu, Yang & Nie, Yu (Marco) & Hall, Jonathan, 2015. "A semi-analytical approach for solving the bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 56-70.
  36. Jia, Zehui & Wang, David Z.W. & Cai, Xingju, 2016. "Traffic managements for household travels in congested morning commute," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 173-189.
  37. Duranton, Gilles, 2015. "Roads and trade in Colombia," Economics of Transportation, Elsevier, vol. 4(1), pages 16-36.
  38. Gonzales, Eric Justin, 2011. "Allocation of Space and the Costs of Multimodal Transport in Cities," University of California Transportation Center, Working Papers qt07x7h9pg, University of California Transportation Center.
  39. Braid, Ralph M., 2018. "Partial peak-load pricing of a transportation bottleneck with homogeneous and heterogeneous values of time," Economics of Transportation, Elsevier, vol. 16(C), pages 29-41.
  40. Kato, Hironori & Kaneko, Yuichiro & Soyama, Yoshihiko, 2014. "Economic benefits of urban rail projects that improve travel-time reliability: Evidence from Tokyo, Japan," Transport Policy, Elsevier, vol. 35(C), pages 202-210.
  41. Button, Kenneth, 2004. "1. The Rationale For Road Pricing: Standard Theory And Latest Advances," Research in Transportation Economics, Elsevier, vol. 9(1), pages 3-25, January.
  42. Lim, Yongtaek & Heydecker, Benjamin, 2005. "Dynamic departure time and stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 97-118, February.
  43. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
  44. Olszewski, Piotr & Xie, Litian, 2005. "Modelling the effects of road pricing on traffic in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 755-772.
  45. Liu, Qiumin & Jiang, Rui & Liu, Ronghui & Zhao, Hui & Gao, Ziyou, 2020. "Travel cost budget based user equilibrium in a bottleneck model with stochastic capacity," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 1-37.
  46. Huang, Hai-Jun & Lam, William H. K., 2002. "Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 253-273, March.
  47. Long, Jiancheng & Szeto, W.Y. & Gao, Ziyou & Huang, Hai-Jun & Shi, Qin, 2016. "The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 179-206.
  48. Adler, Jeffrey L. & Cetin, Mecit, 2001. "A direct redistribution model of congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 447-460, June.
  49. Emmerink, Richard H. M. & Verhoef, Erik T. & Nijkamp, Peter & Rietveld, Piet, 1998. "Information policy in road transport with elastic demand: Some welfare economic considerations," European Economic Review, Elsevier, vol. 42(1), pages 71-95, January.
  50. Stephane Hess & John Polak & Andrew Daly & Geoffrey Hyman, 2007. "Flexible substitution patterns in models of mode and time of day choice: new evidence from the UK and the Netherlands," Transportation, Springer, vol. 34(2), pages 213-238, March.
  51. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
  52. Qian, Zhen (Sean) & Xiao, Feng (Evan) & Zhang, H.M., 2011. "The economics of parking provision for the morning commute," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 861-879, November.
  53. Shen, Wei & Zhang, H.M., 2010. "Pareto-improving ramp metering strategies for reducing congestion in the morning commute," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 676-696, November.
  54. Xu, Shu-Xian & Liu, Ronghui & Liu, Tian-Liang & Huang, Hai-Jun, 2018. "Pareto-improving policies for an idealized two-zone city served by two congestible modes," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 876-891.
  55. Daniel, Joseph I, 1995. "Congestion Pricing and Capacity of Large Hub Airports: A Bottleneck Model with Stochastic Queues," Econometrica, Econometric Society, vol. 63(2), pages 327-370, March.
  56. Yao, Tao & Friesz, Terry L. & Wei, Mike Mingcheng & Yin, Yafeng, 2010. "Congestion derivatives for a traffic bottleneck," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1149-1165, December.
  57. Yang, Hai & Hai-Jun, Huang, 1997. "Analysis of the time-varying pricing of a bottleneck with elastic demand using optimal control theory," Transportation Research Part B: Methodological, Elsevier, vol. 31(6), pages 425-440, November.
  58. Ling-Ling Xiao & Hai-Jun Huang & Ronghui Liu, 2015. "Congestion Behavior and Tolls in a Bottleneck Model with Stochastic Capacity," Transportation Science, INFORMS, vol. 49(1), pages 46-65, February.
  59. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2005. "Macroscopic arc performance models with capacity constraints for within-day dynamic traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 39(4), pages 319-338, May.
  60. Feng Xiao & Zhen Qian & H. Zhang, 2011. "The Morning Commute Problem with Coarse Toll and Nonidentical Commuters," Networks and Spatial Economics, Springer, vol. 11(2), pages 343-369, June.
  61. Tang, Qing & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2021. "Analytical characterization of multi-state effective discharge rates for bus-only lane conversion scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 106-131.
  62. Shen, Wei & Zhang, H.M., 2009. "On the morning commute problem in a corridor network with multiple bottlenecks: Its system-optimal traffic flow patterns and the realizing tolling scheme," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 267-284, March.
  63. L. Denant-Boèmont & R. Petiot, 2003. "Information value and sequential decision-making in a transport setting: an experimental study," Post-Print hal-02422690, HAL.
  64. André De Palma & Robin Lindsey & Guillaume Monchambert, 2015. "The Economics of Crowding in Public Transport," Working Papers hal-01203310, HAL.
  65. Shen, Wei & Zhang, H. Michael, 2009. "On the Morning Commute Problem in a Corridor Network with Multiple Bottlenecks: Its System-optimal Traffic Flow Patterns and the Realizing Tolling Scheme," Institute of Transportation Studies, Working Paper Series qt9bs815sq, Institute of Transportation Studies, UC Davis.
  66. Bao, Yue & Xiao, Feng & Gao, Zaihan & Gao, Ziyou, 2017. "Investigation of the traffic congestion during public holiday and the impact of the toll-exemption policy," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 58-81.
  67. Ma, Rui & Zhang, H.M., 2017. "The morning commute problem with ridesharing and dynamic parking charges," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 345-374.
  68. Tidswell, J. & Downward, A. & Thielen, C. & Raith, A., 2021. "Minimising emissions in traffic assignment with non-monotonic arc costs," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 70-90.
  69. Romeo Danielis & Edoardo Marcucci, 1999. "Bottleneck Congestion and Modal Split Revisited," Working Papers 1999.5, Fondazione Eni Enrico Mattei.
  70. He, Sylvia Y., 2013. "Does flexitime affect choice of departure time for morning home-based commuting trips? Evidence from two regions in California," Transport Policy, Elsevier, vol. 25(C), pages 210-221.
  71. Chung, Byung Do & Yao, Tao & Friesz, Terry L. & Liu, Hongcheng, 2012. "Dynamic congestion pricing with demand uncertainty: A robust optimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1504-1518.
  72. Watling, David, 2006. "User equilibrium traffic network assignment with stochastic travel times and late arrival penalty," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1539-1556, December.
  73. Jin, Wen-Long, 2021. "Stable local dynamics for day-to-day departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 463-479.
  74. Jonathan D. Hall, 2017. "Improving the fit of structural models of congestion," Working Papers tecipa-590, University of Toronto, Department of Economics.
  75. Gonzales, Eric J., 2015. "Coordinated pricing for cars and transit in cities with hypercongestion," Economics of Transportation, Elsevier, vol. 4(1), pages 64-81.
  76. Shen, Wei & Zhang, H.M., 2014. "System optimal dynamic traffic assignment: Properties and solution procedures in the case of a many-to-one network," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 1-17.
  77. Yan, Hai & Lam, William H. K., 1996. "Optimal road tolls under conditions of queueing and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 319-332, September.
  78. Al-Deek, Haitham M. & Khattak, Asad J. & Thananjeyan, Paramsothy, 1998. "A combined traveler behavior and system performance model with advanced traveler information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 479-493, September.
  79. Liu, Louie Nan & McDonald, John F., 1999. "Economic efficiency of second-best congestion pricing schemes in urban highway systems," Transportation Research Part B: Methodological, Elsevier, vol. 33(3), pages 157-188, April.
  80. Zhang, Pinchao & Qian, Sean, 2020. "Path-based system optimal dynamic traffic assignment: A subgradient approach," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 41-63.
  81. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
  82. Kockelman, Kara M. & Kalmanje, Sukumar, 2005. "Credit-based congestion pricing: a policy proposal and the public's response," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 671-690.
  83. Small, K. & Noland, R. & Koskenoja, P., 1995. "Socio-economic Attributes And Impacts Of Travel Reliability: A Stated Preference Approach," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt82n2w53k, Institute of Transportation Studies, UC Berkeley.
  84. Zhao, Chuan-Lin & Leclercq, Ludovic, 2018. "Graphical solution for system optimum dynamic traffic assignment with day-based incentive routing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 87-100.
  85. Sasic, Ana & Habib, Khandker Nurul, 2013. "Modelling departure time choices by a Heteroskedastic Generalized Logit (Het-GenL) model: An investigation on home-based commuting trips in the Greater Toronto and Hamilton Area (GTHA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 15-32.
  86. Ma, Rui & Ban, Xuegang (Jeff) & Szeto, W.Y., 2017. "Emission modeling and pricing on single-destination dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 255-283.
  87. Ho, Chinh Q. & Hensher, David A. & Wang, Shangbo, 2020. "Joint estimation of mode and time of day choice accounting for arrival time flexibility, travel time reliability and crowding on public transport," Journal of Transport Geography, Elsevier, vol. 87(C).
  88. Gonzales, Eric J. & Daganzo, Carlos F., 2011. "Morning Commute with Competing Modes and DistributedDemand: User Equilibrium, System Optimum, and Pricing," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0ft1z2ps, Institute of Transportation Studies, UC Berkeley.
  89. Khattak, Asad J. & De Palma, André, 1997. "The impact of adverse weather conditions on the propensity to change travel decisions: A survey of Brussels commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(3), pages 181-203, May.
  90. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.