IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v32y1998i7p479-493.html
   My bibliography  Save this article

A combined traveler behavior and system performance model with advanced traveler information systems

Author

Listed:
  • Al-Deek, Haitham M.
  • Khattak, Asad J.
  • Thananjeyan, Paramsothy

Abstract

The goal of this paper is to develop a framework for evaluating the effect of Advanced Traveler Information Systems. The framework uses a composite traffic assignment model which combines a probabilistic traveler behavior model of route diversion and a queuing model to evaluate Advanced Traveler Information Systems impacts under incident conditions. The composite assignment model considers three types of travelers: those who are unequipped with electronic devices, i.e. they do not have Advanced Traveler Information Systems or radio in their vehicles; those who receive delay information from radio only; and those who access Advanced Traveler Information Systems only. The unequipped travelers are able to observe incident-induced congestion, if the congestion reaches or exceeds their decision point. The composite model assigns travelers with Advanced Traveler Information Systems to the shortest travel time route. Travelers with radio information and those who can observe the congestion are assigned according to a behavioral model calibrated on revealed preference data. Travelers who are completely unaware of the incident-induced congestion are assigned to their usual route. The unique feature of the composite model is the integration of realistic traveler behavior with system performance while accounting for the effect of real-time travel information. To demonstrate the application of the composite model, we consider the evolution of queues on a two link network with an incident bottleneck. The findings indicate that the overall system performance, measured by average travel time, improves marginally with increased market penetration of Advanced Traveler Information Systems. However, the benefits of Advanced Traveler Information Systems under incident conditions are expected to be marginal when there is more 'information' available to travelers through their own observation or radio. Specifically, delay information received through radio and from observation of incident-induced congestion induces people to divert earlier causing the network to operate closer to system optimal than user equilibrium. This limits the potential benefits of Advanced Traveler Information Systems.

Suggested Citation

  • Al-Deek, Haitham M. & Khattak, Asad J. & Thananjeyan, Paramsothy, 1998. "A combined traveler behavior and system performance model with advanced traveler information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 479-493, September.
  • Handle: RePEc:eee:transa:v:32:y:1998:i:7:p:479-493
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(98)00010-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kanafani, A. & Al-Deek, H., 1991. "A simple model for route guidance benefits," Transportation Research Part B: Methodological, Elsevier, vol. 25(4), pages 191-201, August.
    2. Mannering, Fred L., 1989. "Poisson analysis of commuter flexibility in changing routes and departure times," Transportation Research Part B: Methodological, Elsevier, vol. 23(1), pages 53-60, February.
    3. Gardes, Yonnel & May, Adolf D., 1990. "Traffic Modeling To Evaluate Potential Benefits Of Advanced Traffic Management And In-vehicle Information Systems In A Freeway/Arterial Corridor," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt70c6600f, Institute of Transportation Studies, UC Berkeley.
    4. Arnott, R. & de Palma, A. & Lindsey, R., 1990. "Departure time and route choice for the morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 209-228, June.
    5. Gardes, Yonnel & Haldors, Bruce & May, Adolf D., 1991. "Model Selection And Initial Application Of CONTRAM Model For Evaluating In-vehicle Information Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt37s9526g, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caspar Chorus & Theo Arentze & Harry Timmermans, 2007. "Information impact on quality of multimodal travel choices: conceptualizations and empirical analyses," Transportation, Springer, vol. 34(6), pages 625-645, November.
    2. Zhang, Rong & Verhoef, Erik T., 2006. "A monopolistic market for advanced traveller information systems and road use efficiency," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(5), pages 424-443, June.
    3. Lo, Hong K. & Szeto, W. Y., 2004. "Modeling advanced traveler information services: static versus dynamic paradigms," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 495-515, July.
    4. Coifman, Benjamin A. & Mallika, Ramachandran, 2007. "Distributed surveillance on freeways emphasizing incident detection and verification," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 750-767, October.
    5. David Levinson, 2003. "The Value of Advanced Traveler Information Systems for Route Choice," Working Papers 200307, University of Minnesota: Nexus Research Group.
    6. Levinson, David & Gillen, David & Chang, Elva, 1999. "Assessing the Benefits and Costs of Intelligent Transportation Systems: The Value of Advanced Traveler Information Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9m8534tc, Institute of Transportation Studies, UC Berkeley.
    7. Thill, Jean-Claude & Rogova, Galina & Yan, Jun, 2004. "Evaluating Benefits And Costs Of Intelligent Transportation Systems Elements From A Planning Perspective," Research in Transportation Economics, Elsevier, vol. 8(1), pages 571-603, January.
    8. Bifulco, Gennaro N. & Cantarella, Giulio E. & Simonelli, Fulvio & Velonà, Pietro, 2016. "Advanced traveller information systems under recurrent traffic conditions: Network equilibrium and stability," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 73-87.
    9. Enrique Fernández L., J. & de Cea Ch, Joaquín & Germán Valverde, G., 2009. "Effect of advanced traveler information systems and road pricing in a network with non-recurrent congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 481-499, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:32:y:1998:i:7:p:479-493. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.