IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v35y2001i5p447-460.html
   My bibliography  Save this article

A direct redistribution model of congestion pricing

Author

Listed:
  • Adler, Jeffrey L.
  • Cetin, Mecit

Abstract

This paper discusses a direct redistribution approach to congestion pricing in which monies collected from drivers on a more desirable route are directly transferred to users on a less desirable route. An analytical model for a two-node two-route network is developed. An example is used to demonstrate the applicability of this model. It is shown that this model of toll collection and subsidization will reduce the travel cost for all travelers and totally eliminate the waiting time in the queue. When compared against the social optimal assignment, the direct redistribution model yields almost identical results.

Suggested Citation

  • Adler, Jeffrey L. & Cetin, Mecit, 2001. "A direct redistribution model of congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 447-460, June.
  • Handle: RePEc:eee:transb:v:35:y:2001:i:5:p:447-460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(00)00003-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arnott, R. & de Palma, A. & Lindsey, R., 1990. "Departure time and route choice for the morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 209-228, June.
    2. Small, Kenneth A., 1992. "Using the Revenues from Congestion Pricing," University of California Transportation Center, Working Papers qt32p9m3mm, University of California Transportation Center.
    3. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    4. Ben-Akiva, M. & Bolduc, D. & Bradley, M., 1993. "Estimation of Travel Choice Models with Randomly Distributed Values of Time," Papers 9303, Laval - Recherche en Energie.
    5. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yang & Nie, Yu (Marco), 2011. "Morning commute problem considering route choice, user heterogeneity and alternative system optima," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 619-642.
    2. Chen, Linxi & Yang, Hai, 2012. "Managing congestion and emissions in road networks with tolls and rebates," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 933-948.
    3. Zheng, Yu & Zhang, Xiaoning & Liang, Zhe, 2020. "Multimodal subsidy design for network capacity flexibility optimization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 16-35.
    4. Ren-Yong Guo & Hai-Jun Huang & Hai Yang, 2019. "Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence," Networks and Spatial Economics, Springer, vol. 19(3), pages 833-868, September.
    5. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
    6. Tian, Li-Jun & Yang, Hai & Huang, Hai-Jun, 2013. "Tradable credit schemes for managing bottleneck congestion and modal split with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 1-13.
    7. Chen, Ruoyun & Nozick, Linda, 2016. "Integrating congestion pricing and transit investment planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 124-139.
    8. Holgun-Veras, Jos & Cetin, Mecit, 2009. "Optimal tolls for multi-class traffic: Analytical formulations and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 445-467, May.
    9. François Mirabel & Mathias Reymond, 2011. "The urban toll revenue recycling : what is the optimal share distributed towards mass transit system?," Working Papers hal-01830227, HAL.
    10. Naroditskiy, Victor & Steinberg, Richard, 2015. "Maximizing social welfare in congestion games via redistribution," LSE Research Online Documents on Economics 62771, London School of Economics and Political Science, LSE Library.
    11. Perera, Loshaka & Thompson, Russell G. & Wu, Wenyan, 2021. "Toll and subsidy for freight vehicles on urban roads: A policy decision for City Logistics," Research in Transportation Economics, Elsevier, vol. 90(C).
    12. Yang Liu & Xiaolei Guo & Hai Yang, 2009. "Pareto-improving and revenue-neutral congestion pricing schemes in two-mode traffic networks," Netnomics, Springer, vol. 10(1), pages 123-140, April.
    13. Holgui­n-Veras, Jose & Cetin, Mecit & Xia, Shuwen, 2006. "A comparative analysis of US toll policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 852-871, December.
    14. Naroditskiy, Victor & Steinberg, Richard, 2015. "Maximizing social welfare in congestion games via redistribution," Games and Economic Behavior, Elsevier, vol. 93(C), pages 24-41.
    15. Nie, Yu (Marco) & Liu, Yang, 2010. "Existence of self-financing and Pareto-improving congestion pricing: Impact of value of time distribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(1), pages 39-51, January.
    16. Yang Liu & Yu (Marco) Nie, 2017. "A Credit-Based Congestion Management Scheme in General Two-Mode Networks with Multiclass Users," Networks and Spatial Economics, Springer, vol. 17(3), pages 681-711, September.
    17. Zhi-Chun Li & Ya-Dong Wang & William Lam & Agachai Sumalee & Keechoo Choi, 2014. "Design of Sustainable Cordon Toll Pricing Schemes in a Monocentric City," Networks and Spatial Economics, Springer, vol. 14(2), pages 133-158, June.
    18. Guo, Xiaolei & Yang, Hai, 2010. "Pareto-improving congestion pricing and revenue refunding with multiple user classes," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 972-982, September.
    19. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    20. Cipriani, Ernesto & Mannini, Livia & Montemarani, Barbara & Nigro, Marialisa & Petrelli, Marco, 2019. "Congestion pricing policies: Design and assessment for the city of Rome, Italy," Transport Policy, Elsevier, vol. 80(C), pages 127-135.
    21. Adler, Jeffrey L. & Satapathy, Goutam & Manikonda, Vikram & Bowles, Betty & Blue, Victor J., 2005. "A multi-agent approach to cooperative traffic management and route guidance," Transportation Research Part B: Methodological, Elsevier, vol. 39(4), pages 297-318, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Button, Kenneth, 2004. "1. The Rationale For Road Pricing: Standard Theory And Latest Advances," Research in Transportation Economics, Elsevier, vol. 9(1), pages 3-25, January.
    2. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
    3. Tian, Li-Jun & Yang, Hai & Huang, Hai-Jun, 2013. "Tradable credit schemes for managing bottleneck congestion and modal split with heterogeneous users," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 1-13.
    4. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
    5. Li, Qiaoru & Zhang, Zhe & Li, Kun & Chen, Liang & Wei, Zhenlin & Zhang, Jingchun, 2020. "Evolutionary dynamics of traveling behavior in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. John W Helsel & Venktesh Pandey & Stephen D. Boyles, 2020. "Time-Equitable Dynamic Tolling Scheme For Single Bottlenecks," Papers 2007.07091, arXiv.org.
    7. Feng Xiao & Zhen Qian & H. Zhang, 2011. "The Morning Commute Problem with Coarse Toll and Nonidentical Commuters," Networks and Spatial Economics, Springer, vol. 11(2), pages 343-369, June.
    8. Liu, Louie Nan & McDonald, John F., 1999. "Economic efficiency of second-best congestion pricing schemes in urban highway systems," Transportation Research Part B: Methodological, Elsevier, vol. 33(3), pages 157-188, April.
    9. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.
    10. Liu, Yang & Nie, Yu (Marco), 2011. "Morning commute problem considering route choice, user heterogeneity and alternative system optima," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 619-642.
    11. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    12. Braid, Ralph M., 2018. "Partial peak-load pricing of a transportation bottleneck with homogeneous and heterogeneous values of time," Economics of Transportation, Elsevier, vol. 16(C), pages 29-41.
    13. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
    14. Takayama, Yuki & Kuwahara, Masao, 2017. "Bottleneck congestion and residential location of heterogeneous commuters," Journal of Urban Economics, Elsevier, vol. 100(C), pages 65-79.
    15. Gonzales, Eric J. & Daganzo, Carlos F., 2012. "Morning commute with competing modes and distributed demand: User equilibrium, system optimum, and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1519-1534.
    16. Erik Verhoef, 1997. "Time-Varying Tolls in a Dynamic Model of Road Traffic Congestion with Elastic Demand," Tinbergen Institute Discussion Papers 97-028/3, Tinbergen Institute.
    17. Kobayashi, Kiyoshi & Do, Myungsik, 2005. "The informational impacts of congestion tolls upon route traffic demands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 651-670.
    18. Boffa, Federico & Fedele, Alessandro & Iozzi, Alberto, 2023. "Congestion and incentives in the age of driverless fleets," Journal of Urban Economics, Elsevier, vol. 137(C).
    19. Ling-Ling Xiao & Hai-Jun Huang & Ronghui Liu, 2015. "Congestion Behavior and Tolls in a Bottleneck Model with Stochastic Capacity," Transportation Science, INFORMS, vol. 49(1), pages 46-65, February.
    20. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:35:y:2001:i:5:p:447-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.