IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v38y2010i7p3180-3191.html
   My bibliography  Save this item

Electricity market design for facilitating the integration of wind energy: Experience and prospects with the Australian National Electricity Market

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Darmani, Anna & Rickne, Annika & Hidalgo, Antonio & Arvidsson, Niklas, 2016. "When outcomes are the reflection of the analysis criteria: A review of the tradable green certificate assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 372-381.
  2. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
  3. Elliston, Ben & Diesendorf, Mark & MacGill, Iain, 2012. "Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 45(C), pages 606-613.
  4. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
  5. Simshauser, Paul, 2018. "Price discrimination and the modes of failure in deregulated retail electricity markets," Energy Economics, Elsevier, vol. 75(C), pages 54-70.
  6. Simshauser, P. & Gilmore, J., 2018. "On entry cost dynamics in Australia’s National Electricity Market," Cambridge Working Papers in Economics 1875, Faculty of Economics, University of Cambridge.
  7. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
  8. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
  9. Barry, Michael & Baur, Patrick & Gaudard, Ludovic & Giuliani, Gianluca & Hediger, Werner & Romerio, Franco & Schillinger, Moritz & Schumann, René & Voegeli, Gillaume & Weigt, Hannes, 2015. "The Future of Swiss Hydropower A Review on Drivers and Uncertainties," Working papers 2015/11, Faculty of Business and Economics - University of Basel.
  10. repec:dui:wpaper:1305 is not listed on IDEAS
  11. Simshauser, P., 2019. "On the impact of government-initiated CfD’s in Australia’s National Electricity Market," Cambridge Working Papers in Economics 1901, Faculty of Economics, University of Cambridge.
  12. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
  13. Simshauser, Paul, 2018. "Garbage can theory and Australia's National Electricity Market: Decarbonisation in a hostile policy environment," Energy Policy, Elsevier, vol. 120(C), pages 697-713.
  14. Moradi-Dalvand, M. & Mohammadi-Ivatloo, B. & Amjady, N. & Zareipour, H. & Mazhab-Jafari, A., 2015. "Self-scheduling of a wind producer based on Information Gap Decision Theory," Energy, Elsevier, vol. 81(C), pages 588-600.
  15. Jenny Riesz & Michael Milligan, 2015. "Designing electricity markets for a high penetration of variable renewables," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(3), pages 279-289, May.
  16. Zhao, Xiaoli & Wang, Feng & Wang, Mei, 2012. "Large-scale utilization of wind power in China: Obstacles of conflict between market and planning," Energy Policy, Elsevier, vol. 48(C), pages 222-232.
  17. Simshauser, P., 2021. "Rooftop Solar PV and the Peak Load Problem in the NEM’s Queensland Region," Cambridge Working Papers in Economics 2180, Faculty of Economics, University of Cambridge.
  18. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
  19. Hasan, Kazi Nazmul & Saha, Tapan Kumar & Eghbal, Mehdi, 2014. "Investigating the priority of market participants for low emission generation entry into the Australian grid," Energy, Elsevier, vol. 71(C), pages 445-455.
  20. Wu, Zhaoyuan & Zhou, Ming & Zhang, Ting & Li, Gengyin & Zhang, Yan & Liu, Xiaojuan, 2020. "Imbalance settlement evaluation for China's balancing market design via an agent-based model with a multiple criteria decision analysis method," Energy Policy, Elsevier, vol. 139(C).
  21. Simshauser, P., 2021. "Renewable Energy Zones in Australia’s National Electricity Market," Cambridge Working Papers in Economics 2119, Faculty of Economics, University of Cambridge.
  22. Cochran, Jaquelin & Mai, Trieu & Bazilian, Morgan, 2014. "Meta-analysis of high penetration renewable energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 246-253.
  23. Oliva H., Sebastian, 2017. "Residential energy efficiency and distributed generation - Natural partners or competition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 932-940.
  24. Gilmore, J. & Nolan, T. & Simshauser, P., 2022. "The Levelised Cost of Frequency Control Ancillary Services in Australia’s National Electricity Market," Cambridge Working Papers in Economics 2203, Faculty of Economics, University of Cambridge.
  25. Paul Simshauser, 2021. "Lessons from Australia's National Electricity Market 1998-2018: strengths and weaknesses of the reform experience," Chapters, in: Jean-Michel Glachant & Paul L. Joskow & Michael G. Pollitt (ed.), Handbook on Electricity Markets, chapter 9, pages 242-286, Edward Elgar Publishing.
  26. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
  27. Forrest, Sam & MacGill, Iain, 2013. "Assessing the impact of wind generation on wholesale prices and generator dispatch in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 120-132.
  28. Neelawela, U.D. & Selvanathan, E.A. & Wagner, L.D., 2019. "Global measure of electricity security: A composite index approach," Energy Economics, Elsevier, vol. 81(C), pages 433-453.
  29. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
  30. Paul Simshauser & Joel Gilmore, 2020. "Is the NEM broken? Policy discontinuity and the 2017-2020 investment megacycle," Working Papers EPRG2014, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  31. Lyons, Selina & Whale, Jonathan & Wood, Justin, 2018. "Wind power variations during storms and their impact on balancing generators and carbon emissions in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 118(C), pages 1052-1063.
  32. Spiecker, Stephan & Weber, Christoph, 2014. "The future of the European electricity system and the impact of fluctuating renewable energy – A scenario analysis," Energy Policy, Elsevier, vol. 65(C), pages 185-197.
  33. Cludius, Johanna & Forrest, Sam & MacGill, Iain, 2014. "Distributional effects of the Australian Renewable Energy Target (RET) through wholesale and retail electricity price impacts," Energy Policy, Elsevier, vol. 71(C), pages 40-51.
  34. Wu, Zhaoyuan & Zhou, Ming & Li, Gengyin & Zhao, Tong & Zhang, Yan & Liu, Xiaojuan, 2020. "Interaction between balancing market design and market behaviour of wind power producers in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  35. Tim Nelson & Tahlia Nolan & Joel Gilmore, 2022. "What’s next for the Renewable Energy Target – resolving Australia’s integration of energy and climate change policy?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 136-163, January.
  36. Simshauser, Paul, 2018. "On intermittent renewable generation & the stability of Australia's National Electricity Market," Energy Economics, Elsevier, vol. 72(C), pages 1-19.
  37. Simshauser, Paul, 2019. "Missing money, missing policy and Resource Adequacy in Australia's National Electricity Market," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
  38. Johanna Cludiud & Sam Forrest & Iain MacGill, 2013. "Distributional Effects of the Australian Renewable Energy Target (RET) through Wholesale and Retail Electricity Price Impacts," Discussion Papers 2013-33, School of Economics, The University of New South Wales.
  39. Hasan, Kazi Nazmul & Saha, Tapan Kumar & Chattopadhyay, Deb & Eghbal, Mehdi, 2014. "Benefit-based expansion cost allocation for large scale remote renewable power integration into the Australian grid," Applied Energy, Elsevier, vol. 113(C), pages 836-847.
  40. Nelson, Tim & Rai, Alan & Esplin, Ryan, 2021. "Overcoming the limitations of variable renewable production subsidies as a means of decarbonising electricity markets," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 544-556.
  41. Simshauser, Paul & Gilmore, Joel, 2022. "Climate change policy discontinuity & Australia's 2016-2021 renewable investment supercycle," Energy Policy, Elsevier, vol. 160(C).
  42. Paul Simshauser, 2019. "On the Stability of Energy-Only Markets with Government-Initiated Contracts-for-Differences," Energies, MDPI, vol. 12(13), pages 1-24, July.
  43. Cutler, Nicholas J. & Boerema, Nicholas D. & MacGill, Iain F. & Outhred, Hugh R., 2011. "High penetration wind generation impacts on spot prices in the Australian national electricity market," Energy Policy, Elsevier, vol. 39(10), pages 5939-5949, October.
  44. Nikoobakht, Ahmad & Aghaei, Jamshid & Mardaneh, Mohammad, 2016. "Managing the risk of uncertain wind power generation in flexible power systems using information gap decision theory," Energy, Elsevier, vol. 114(C), pages 846-861.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.