IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2011-001.html
   My bibliography  Save this paper

Localising temperature risk

Author

Listed:
  • Härdle, Wolfgang Karl
  • López Cabrera, Brenda
  • Okhrin, Ostap
  • Wang, Weining

Abstract

On the temperature derivative market, modeling temperature volatility is an important issue for pricing and hedging. In order to apply pricing tools of financial mathematics, one needs to isolate a Gaussian risk factor. A conventional model for temperature dynamics is a stochastic model with seasonality and inter temporal autocorrelation. Empirical work based on seasonality and autocorrelation correction reveals that the obtained residuals are heteroscedastic with a periodic pattern. The object of this research is to estimate this heteroscedastic function so that after scale normalisation a pure standardised Gaussian variable appears. Earlier work investigated this temperature risk in dfferent locations and showed that neither parametric component functions nor a local linear smoother with constant smoothing parameter are flexible enough to generally describe the volatility process well. Therefore, we consider a local adaptive modeling approach to find at each time point, an optimal smoothing parameter to locally estimate the seasonality and volatility. Our approach provides a more flexible and accurate fitting procedure of localised temperature risk process by achieving excellent normal risk factors.

Suggested Citation

  • Härdle, Wolfgang Karl & López Cabrera, Brenda & Okhrin, Ostap & Wang, Weining, 2010. "Localising temperature risk," SFB 649 Discussion Papers 2011-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2011-001
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/56665/1/642762392.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chen, Ying & Härdle, Wolfgang Karl & Pigorsch, Uta, 2010. "Localized Realized Volatility Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1376-1393.
    2. Ulrich Horst & Matthias Müller, 2007. "On the Spanning Property of Risk Bonds Priced by Equilibrium," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 784-807, November.
    3. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    4. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    5. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    6. Wolfgang Karl Härdle & Brenda López Cabrera, 2012. "The Implied Market Price of Weather Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 59-95, February.
    7. P. Čížek & W. Härdle & V. Spokoiny, 2009. "Adaptive pointwise estimation in time-inhomogeneous conditional heteroscedasticity models," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 248-271, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Härdle, Wolfgang Karl & López-Cabrera, Brenda & Ritter, Matthias, 2012. "Forecast based pricing of weather derivatives," SFB 649 Discussion Papers 2012-027, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. repec:hum:wpaper:sfb649dp2012-027 is not listed on IDEAS
    3. Eric Hillebrand & Marcelo C. Medeiros, 2016. "Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 23-41, January.
    4. Lutz, Benjamin Johannes & Pigorsch, Uta & Rotfuß, Waldemar, 2013. "Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals," Energy Economics, Elsevier, vol. 40(C), pages 222-232.
    5. Wolfgang Karl Hardle and Maria Osipenko, 2012. "Spatial Risk Premium on Weather Derivatives and Hedging Weather Exposure in Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    6. Ying Chen & Bo Li & Linlin Niu, 2013. "A Local Vector Autoregressive Framework and its Applications to Multivariate Time Series Monitoring and Forecasting," Working Papers 2013-12-05, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    7. Chen, Ying & Han, Qian & Niu, Linlin, 2018. "Forecasting the term structure of option implied volatility: The power of an adaptive method," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 157-177.
    8. repec:hum:wpaper:sfb649dp2009-046 is not listed on IDEAS
    9. Benth, Fred & Härdle, Wolfgang Karl & López Cabrera, Brenda, 2009. "Pricing of Asian temperature risk," SFB 649 Discussion Papers 2009-046, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Chen, Ying & Niu, Linlin, 2014. "Adaptive dynamic Nelson–Siegel term structure model with applications," Journal of Econometrics, Elsevier, vol. 180(1), pages 98-115.
    11. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    12. Monge, Manuel & Gil-Alana, Luis A. & Pérez de Gracia, Fernando, 2017. "U.S. shale oil production and WTI prices behaviour," Energy, Elsevier, vol. 141(C), pages 12-19.
    13. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    14. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    15. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Pigorsch, Uta, 2008. "Measuring and modeling risk using high-frequency data," SFB 649 Discussion Papers 2008-045, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    17. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    18. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    19. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    20. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CARF F-Series CARF-F-197, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2010.
    21. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    22. repec:ipg:wpaper:2014-503 is not listed on IDEAS
    23. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," JRFM, MDPI, vol. 7(2), pages 1-30, June.

    More about this item

    Keywords

    weather derivatives; localising temperature residuals; seasonality; local model selection;
    All these keywords.

    JEL classification:

    • G19 - Financial Economics - - General Financial Markets - - - Other
    • G29 - Financial Economics - - Financial Institutions and Services - - - Other
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • N23 - Economic History - - Financial Markets and Institutions - - - Europe: Pre-1913
    • N53 - Economic History - - Agriculture, Natural Resources, Environment and Extractive Industries - - - Europe: Pre-1913
    • Q59 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2011-001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.