IDEAS home Printed from
   My bibliography  Save this paper

Forecasting Regional Labour Markets with GVAR Models and Indicators (refereed paper)


  • Norbert Schanne



The development of employment and unemployment in regional labour markets is known to spatially interdependent. Global Vector-Autoregressive (GVAR) models generate a link between the local and the surrounding labour markets and thus might be useful when analysing and forecasting employment and unemployment even if they are non-stationary or co-trending. Furthermore, GVARs have the advantage to allow for both strong cross-sectional dependence on ``leader regions' and weak cross-sectional, spatial dependence. For the recent and further development of labour markets the economic situation (described e.g. by business-cycle indicators), politics and environmental impacts (e.g. climate) may be relevant. Information on these impacts can be integrated in addition to the joint development of employment and unemployment and the spatial link in a way that allows on the one hand to carry out economic plausibility checks easily and on the other hand to directly receive measures regarding the statistical properties and the precision of the forecasts. Then, the forecasting accuracy is demonstrated for German regional labour-market data in simulated forecasts at different horizons and for several periods. Business-cycle indicators seem to have no information regarding labour-market prediction, climate indicators little. In contrast, including information about labour-market policies and vacancies, and accounting for the lagged and contemporaneous spatial dependence can improve the forecasts relative to a simple bivariate model.

Suggested Citation

  • Norbert Schanne, 2011. "Forecasting Regional Labour Markets with GVAR Models and Indicators (refereed paper)," ERSA conference papers ersa10p1044, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa10p1044

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Schanne, N. & Wapler, R. & Weyh, A., 2010. "Regional unemployment forecasts with spatial interdependencies," International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
    2. S Holly & M Hashem Pesaran & T Yamagata, "undated". "Spatial and Temporal Diffusion of House Prices in the UK," Discussion Papers 09/32, Department of Economics, University of York.
    3. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    4. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    5. Pierre Cahuc & André Zylberberg, 2004. "Labor Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 026203316x, July.
    6. Bénédicte Vidaillet & V. D'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    7. Eleonora Patacchini & Yves Zenou, 2007. "Spatial dependence in local unemployment rates," Journal of Economic Geography, Oxford University Press, vol. 7(2), pages 169-191, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Alexander Chudik & M. Hashem Pesaran, 2016. "Theory And Practice Of Gvar Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
    2. Vakulenko, Elena, 2015. "Analysis of the relationship between regional labour markets in Russia using Okun’s model," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 40(4), pages 28-48.
    3. Schanne, Norbert, 2012. "The formation of experts' expectations on labour markets : do they run with the pack?," IAB Discussion Paper 201225, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa10p1044. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gunther Maier). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.