IDEAS home Printed from https://ideas.repec.org/p/ven/wpaper/2013_02.html
   My bibliography  Save this paper

Cost-Benefit Analysis of policies for the development of electric vehicles in Germany: methods and results

Author

Listed:
  • J�r�me Massiani

    (Department of Economics, University Of Venice C� Foscari)

  • J�rg Radeke

Abstract

Policies toward the diffusion of Electric Vehicles received a lot of attention in the latest years in many developed countries. However evaluation of such policies is still incipient and consistent assessment tools are necessary to avoid that policies are flawed or based on ungrounded a priori. In this paper, we review different existing models and present a simulation tool for the assessment of EV policies in Germany. This model incorporates detailed representation of the various technological, behavioral and economical mechanisms that govern the possible diffusion of EV in Germany. Consistent with most of the literature, our finding suggest that most of EV supporting policies have a negative outcome. These results are strongly driven by the regulatory framework in which EV diffusion could take place and especially the Car Average Fleet Emission regulation EU 443

Suggested Citation

  • J�r�me Massiani & J�rg Radeke, 2013. "Cost-Benefit Analysis of policies for the development of electric vehicles in Germany: methods and results," Working Papers 2013:02, Department of Economics, University of Venice "Ca' Foscari".
  • Handle: RePEc:ven:wpaper:2013_02
    as

    Download full text from publisher

    File URL: http://www.unive.it/pag/fileadmin/user_upload/dipartimenti/economia/doc/Pubblicazioni_scientifiche/working_papers/2013/WP_DSE_massiani_radeke_02_13.pdf
    File Function: First version, 2013
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fredrik Carlsson & Olof Johansson-Stenman, 2003. "Costs and Benefits of Electric Vehicles," Journal of Transport Economics and Policy, University of Bath, vol. 37(1), pages 1-28, January.
    2. Martin Achtnicht, 2012. "German car buyers’ willingness to pay to reduce CO 2 emissions," Climatic Change, Springer, vol. 113(3), pages 679-697, August.
    3. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
    4. Frank M. Bass, 2004. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 50(12_supple), pages 1825-1832, December.
    5. Kazimi, Camilla, 1997. "Evaluating the Environmental Impact of Alternative-Fuel Vehicles," Journal of Environmental Economics and Management, Elsevier, vol. 33(2), pages 163-185, June.
    6. Zito, Pietro & Salerno, Silvia, 2004. "Potential demand and cost-benefit analysis of electric cars," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 27, pages 1-14.
    7. J?rome Massiani & Jens Weinmann, 2012. "Estimating electric car?s emissions in Germany: an analysis through a pivotal marginal method and comparison with other methods," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2012(2), pages 131-155.
    8. J?rome Massiani, 2012. "Using Stated Preferences to Forecast the Market Diffusion of Alternative Fuel Vehicles," SCIENZE REGIONALI, FrancoAngeli Editore, vol. 2012(3), pages 93-121.
    9. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    10. Dagsvik, John K. & Wennemo, Tom & Wetterwald, Dag G. & Aaberge, Rolf, 2002. "Potential demand for alternative fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 361-384, May.
    11. Kley, Fabian & Wietschel, Martin & Dallinger, David, 2010. "Evaluation of European electric vehicle support schemes," Working Papers "Sustainability and Innovation" S7/2010, Fraunhofer Institute for Systems and Innovation Research (ISI).
    12. Kazimi, Camilla, 1997. "Valuing Alternative-Fuel Vehicles in Southern California," American Economic Review, American Economic Association, vol. 87(2), pages 265-271, May.
    13. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
    14. Vance, Colin & Mehlin, Markus, 2009. "Tax Policy and CO2 Emissions – An Econometric Analysis of the German Automobile Market," Ruhr Economic Papers 89, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernice Huang & Yunkyung Choi & Samuel Chng & Harvey Neo, 2023. "Examining Policy Strategies for Electrifying Transportation in ASEAN: A STEELUP Framework Evaluation," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    2. Zhang, Xingping & Liang, Yanni & Yu, Enhai & Rao, Rao & Xie, Jian, 2017. "Review of electric vehicle policies in China: Content summary and effect analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 698-714.
    3. Wenbo Li & Ruyin Long & Hong Chen & Feiyu Chen & Xiao Zheng & Muyi Yang, 2019. "Effect of Policy Incentives on the Uptake of Electric Vehicles in China," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    4. Zhongqi Deng & Peng Tian, 2020. "Are China's subsidies for electric vehicles effective?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(4), pages 475-489, June.
    5. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    6. Stefan Englberger & Holger Hesse & Daniel Kucevic & Andreas Jossen, 2019. "A Techno-Economic Analysis of Vehicle-to-Building: Battery Degradation and Efficiency Analysis in the Context of Coordinated Electric Vehicle Charging," Energies, MDPI, vol. 12(5), pages 1-17, March.
    7. Abotalebi, Elnaz & Scott, Darren M. & Ferguson, Mark R., 2019. "Why is electric vehicle uptake low in Atlantic Canada? A comparison to leading adoption provinces," Journal of Transport Geography, Elsevier, vol. 74(C), pages 289-298.
    8. Lopez, Neil Stephen & Tria, Lew Andrew & Tayo, Leo Allen & Cruzate, Rovinna Janel & Oppus, Carlos & Cabacungan, Paul & Isla, Igmedio & Ansay, Arjun & Garcia, Teodinis & Cabarrubias-Dela Cruz, Kevien &, 2021. "Societal cost-benefit analysis of electric vehicles in the Philippines with the inclusion of impacts to balance of payments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Rusich, Andrea & Danielis, Romeo, 2015. "Total cost of ownership, social lifecycle cost and energy consumption of various automotive technologies in Italy," Research in Transportation Economics, Elsevier, vol. 50(C), pages 3-16.
    10. Xiaohong Jiang & Xiucheng Guo, 2020. "Evaluation of Performance and Technological Characteristics of Battery Electric Logistics Vehicles: China as a Case Study," Energies, MDPI, vol. 13(10), pages 1-23, May.
    11. Nian, Victor & Hari, M.P. & Yuan, Jun, 2019. "A new business model for encouraging the adoption of electric vehicles in the absence of policy support," Applied Energy, Elsevier, vol. 235(C), pages 1106-1117.
    12. Ito, Yutaka & Managi, Shunsuke, 2015. "The potential of alternative fuel vehicles: A cost-benefit analysis," Research in Transportation Economics, Elsevier, vol. 50(C), pages 39-50.
    13. Künle, Eglantine & Minke, Christine, 2022. "Macro-environmental comparative analysis of e-mobility adoption pathways in France, Germany and Norway," Transport Policy, Elsevier, vol. 124(C), pages 160-174.
    14. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    15. Wang, Ning & Tang, Linhao & Pan, Huizhong, 2017. "Effectiveness of policy incentives on electric vehicle acceptance in China: A discrete choice analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 210-218.
    16. Keuchel, Stephan & Jacobs, Leif & Laurenz, Karolyn, 2019. "Owners of energy-efficient houses as a target group for sustainable electric mobility," Transport Policy, Elsevier, vol. 81(C), pages 254-262.
    17. Weixing Liu & Hongtao Yi, 2020. "What Affects the Diffusion of New Energy Vehicles Financial Subsidy Policy? Evidence from Chinese Cities," IJERPH, MDPI, vol. 17(3), pages 1-15, January.
    18. Ma, Shao-Chao & Fan, Ying & Feng, Lianyong, 2017. "An evaluation of government incentives for new energy vehicles in China focusing on vehicle purchasing restrictions," Energy Policy, Elsevier, vol. 110(C), pages 609-618.
    19. Hirte, Georg & Tscharaktschiew, Stefan, 2013. "The optimal subsidy on electric vehicles in German metropolitan areas: A spatial general equilibrium analysis," Energy Economics, Elsevier, vol. 40(C), pages 515-528.
    20. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    21. Anna Kiziltan & Mustafa Kiziltan & Shihomi Ara Aksoy & Merih Aydınalp Köksal & Ş. Elçin Tekeli & Nilhan Duran & S. Yeşer Aslanoğlu & Fatma Öztürk & Nazan Özyürek & Pervin Doğan & Ağça Gül Yılmaz & Can, 2023. "Cost–benefit analysis of road-transport policy options to combat air pollution in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10765-10798, October.
    22. Li, Wenbo & Long, Ruyin & Chen, Hong, 2016. "Consumers’ evaluation of national new energy vehicle policy in China: An analysis based on a four paradigm model," Energy Policy, Elsevier, vol. 99(C), pages 33-41.
    23. Yixi Xue & Yi Zhang & Yi Chen, 2019. "An Evaluation Framework for the Planning of Electric Car-Sharing Systems: A Combination Model of AHP-CBA-VD," Sustainability, MDPI, vol. 11(20), pages 1-22, October.
    24. Du, Jiuyu & Li, Feiqiang & Li, Jianqiu & Wu, Xiaogang & Song, Ziyou & Zou, Yunfei & Ouyang, Minggao, 2019. "Evaluating the technological evolution of battery electric buses: China as a case," Energy, Elsevier, vol. 176(C), pages 309-319.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jèrome Massiani, 2011. "Modelling and evaluation of the diffusion of electric vehicles: existing models, results, and proposal for a new model," Working Papers 1106, SIET Società Italiana di Economia dei Trasporti e della Logistica, revised 2011.
    2. Jèrome Massiani, 2011. "Modelling and evaluation of the diffusion of electric vehicles: existing models, results, and proposal for a new model," Working Papers 11_6, SIET Società Italiana di Economia dei Trasporti e della Logistica, revised 2011.
    3. J�r�me Massiani, 2013. "The use of Stated Preferences to forecast alternative fuel vehicles market diffusion: Comparisons with other methods and proposal for a Synthetic Utility Function," Working Papers 2013:12, Department of Economics, University of Venice "Ca' Foscari".
    4. Hirte, Georg & Tscharaktschiew, Stefan, 2013. "The optimal subsidy on electric vehicles in German metropolitan areas: A spatial general equilibrium analysis," Energy Economics, Elsevier, vol. 40(C), pages 515-528.
    5. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    6. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    7. J�r�me Massiani, 2013. "SP surveys for electric and alternative fuel vehicles: are we doing the right thing?," Working Papers 2013_01, Department of Economics, University of Venice "Ca' Foscari".
    8. Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.
    9. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    10. Bernd Frick & Franziska Prockl, 2018. "Information Precision In Online Communities: Player Valuations On Www.Transfermarkt.De," Working Papers Dissertations 37, Paderborn University, Faculty of Business Administration and Economics.
    11. Stefan N. Groesser & Niklas Jovy, 2016. "Business model analysis using computational modeling: a strategy tool for exploration and decision-making," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 27(1), pages 61-88, February.
    12. Amini, Mehdi & Li, Haitao, 2011. "Supply chain configuration for diffusion of new products: An integrated optimization approach," Omega, Elsevier, vol. 39(3), pages 313-322, June.
    13. Yang Liu and Taoyuan Wei, 2016. "Market and Non-market Policies for Renewable Energy Diffusion: A Unifying Framework and Empirical Evidence from Chinas Wind Power Sector," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    14. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    15. Cartenì, Armando & Cascetta, Ennio & de Luca, Stefano, 2016. "A random utility model for park & carsharing services and the pure preference for electric vehicles," Transport Policy, Elsevier, vol. 48(C), pages 49-59.
    16. Gary Biglaiser & Jacques Crémer & André Veiga, 2020. "Migration between Platforms," CESifo Working Paper Series 8185, CESifo.
    17. Sharad Goel & Ashton Anderson & Jake Hofman & Duncan J. Watts, 2016. "The Structural Virality of Online Diffusion," Management Science, INFORMS, vol. 62(1), pages 180-196, January.
    18. Bi-Huei Tsai & Yiming Li, 2011. "Modelling competition in global LCD TV industry," Applied Economics, Taylor & Francis Journals, vol. 43(22), pages 2969-2981.
    19. Carlsson, Fredrik & Johansson-Stenman, Olof, 2002. "Costs and Benefits of Electric Vehicles - A 2010 Perspective," Working Papers in Economics 73, University of Gothenburg, Department of Economics.
    20. Lemmens, Aurélie & Croux, Christophe & Stremersch, Stefan, 2012. "Dynamics in the international market segmentation of new product growth," International Journal of Research in Marketing, Elsevier, vol. 29(1), pages 81-92.

    More about this item

    Keywords

    Electric vehicles; evaluation; cost benefit analysis;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2013_02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geraldine Ludbrook (email available below). General contact details of provider: https://edirc.repec.org/data/dsvenit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.