IDEAS home Printed from https://ideas.repec.org/p/usg/dp2005/2005-04.html
   My bibliography  Save this paper

A general multivariate threshold GARCH model with dynamic conditional correlations

Author

Listed:
  • Fabio Trojani
  • Francesco Audrino

Abstract

We propose a new multivariate DCC-GARCH model that extends existing approaches by admitting multivariate thresholds in conditional volatilities and conditional correlations. Model estimation is numerically feasible in large dimensions and positive semi-definiteness of conditional covariance matrices is naturally ensured by the pure model structure. Conditional thresholds in volatilities and correlations are estimated from the data, together with all other model parameters. We study the performance of our approach in some Monte Carlo simulations, where it is shown that the model is able to fit correctly a GARCH-type dynamics and a complex threshold structure in conditional volatilities and correlations of simulated data. In a real data application to international equity markets, we observe estimated conditional volatilities that are strongly influenced by GARCH-type and multivariate threshold effects. Conditional correlations, instead, are determined by simple threshold structures where no GARCH-type effect could be identified.

Suggested Citation

  • Fabio Trojani & Francesco Audrino, 2005. "A general multivariate threshold GARCH model with dynamic conditional correlations," University of St. Gallen Department of Economics working paper series 2005 2005-04, Department of Economics, University of St. Gallen.
  • Handle: RePEc:usg:dp2005:2005-04
    as

    Download full text from publisher

    File URL: http://ux-tauri.unisg.ch/RePEc/usg/dp2005/DP-04_Tr.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. King, Mervyn A & Wadhwani, Sushil, 1990. "Transmission of Volatility between Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 5-33.
    3. Engle, Robert F & Ito, Takatoshi & Lin, Wen-Ling, 1990. "Meteor Showers or Heat Waves? Heteroskedastic Intra-daily Volatility in the Foreign Exchange Market," Econometrica, Econometric Society, vol. 58(3), pages 525-542, May.
    4. Becker, Kent G. & Finnerty, Joseph E. & Friedman, Joseph, 1995. "Economic news and equity market linkages between the U.S. and U.K," Journal of Banking & Finance, Elsevier, vol. 19(7), pages 1191-1210, October.
    5. Francesco Audrino & Fabio Trojani, 2006. "Estimating and predicting multivariate volatility thresholds in global stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 345-369, April.
    6. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245, Elsevier.
    7. Olivier Ledoit & Pedro Santa-Clara & Michael Wolf, 2003. "Flexible Multivariate GARCH Modeling with an Application to International Stock Markets," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 735-747, August.
    8. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    9. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    10. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    11. Hamao, Yasushi & Masulis, Ronald W & Ng, Victor, 1990. "Correlations in Price Changes and Volatility across International Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 281-307.
    12. Kim, Sang W. & Rogers, John H., 1995. "International stock price spillovers and market liberalization: Evidence from Korea, Japan, and the United States," Journal of Empirical Finance, Elsevier, vol. 2(2), pages 117-133, June.
    13. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models: The Model Confidence Set Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 839-861, December.
    14. Adrian Pagan, 1986. "Two Stage and Related Estimators and Their Applications," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 517-538.
    15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    16. Bae, Kee-Hong & Andrew Karolyi, G., 1995. "Good news, band news and international spilovers of stock return volatility between Japan and the U.S," Pacific-Basin Finance Journal, Elsevier, vol. 3(1), pages 144-144, May.
    17. Koutmos, Gregory & Booth, G Geoffrey, 1995. "Asymmetric volatility transmission in international stock markets," Journal of International Money and Finance, Elsevier, vol. 14(6), pages 747-762, December.
    18. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    19. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    20. Audrino, Francesco, 2006. "Tree-Structured Multiple Regimes in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 338-353, July.
    21. Fulvio Corsi & Francesco Audrino, 2007. "Realized Correlation Tick-by-Tick," University of St. Gallen Department of Economics working paper series 2007 2007-02, Department of Economics, University of St. Gallen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boudt, Kris & Daníelsson, Jón & Laurent, Sébastien, 2013. "Robust forecasting of dynamic conditional correlation GARCH models," International Journal of Forecasting, Elsevier, vol. 29(2), pages 244-257.
    2. Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014. "The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options," International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
    3. Fulvio Corsi & Francesco Audrino, 2012. "Realized Covariance Tick-by-Tick in Presence of Rounded Time Stamps and General Microstructure Effects," Journal of Financial Econometrics, Oxford University Press, vol. 10(4), pages 591-616, September.
    4. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    5. Chang, C-L. & McAleer, M.J. & Tansuchat, R., 2009. "Modelling conditional correlations for risk diversification in crude oil markets," Econometric Institute Research Papers EI 2009-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Paolo Gorgi & Siem Jan Koopman, 2020. "Beta observation-driven models with exogenous regressors: a joint analysis of realized correlation and leverage effects," Tinbergen Institute Discussion Papers 20-004/III, Tinbergen Institute.
    7. Stefano Peluso & Fulvio Corsi & Antonietta Mira, 2015. "A Bayesian High-Frequency Estimator of the Multivariate Covariance of Noisy and Asynchronous Returns," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 665-697.
    8. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    9. Kuruppuarachchi, Duminda & Premachandra, I.M., 2016. "Information spillover dynamics of the energy futures market sector: A novel common factor approach," Energy Economics, Elsevier, vol. 57(C), pages 277-294.
    10. Li, Johnny Siu-Hang & Ng, Andrew C.Y. & Chan, Wai-Sum, 2015. "Managing financial risk in Chinese stock markets: Option pricing and modeling under a multivariate threshold autoregression," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 217-230.
    11. Kang‐Soek Lee & Richard A. Werner, 2023. "Are lower interest rates really associated with higher growth? New empirical evidence on the interest rate thesis from 19 countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3960-3975, October.
    12. So, Mike K.P. & Chan, Thomas W.C. & Chu, Amanda M.Y., 2022. "Efficient estimation of high-dimensional dynamic covariance by risk factor mapping: Applications for financial risk management," Journal of Econometrics, Elsevier, vol. 227(1), pages 151-167.
    13. Rezitis Anthony N & Stavropoulos Konstantinos S, 2011. "Price Transmission and Volatility in the Greek Broiler Sector: A Threshold Cointegration Analysis," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 9(1), pages 1-37, July.
    14. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
    15. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    16. Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
    17. Sarantis Tsiaplias & Chew Lian Chua, 2013. "A Multivariate GARCH Model Incorporating the Direct and Indirect Transmission of Shocks," Econometric Reviews, Taylor & Francis Journals, vol. 32(2), pages 244-271, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Barone-Adesi & Francesco Audrino, 2006. "Average conditional correlation and tree structures for multivariate GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 579-600.
    2. Francesco Audrino & Fabio Trojani, 2006. "Estimating and predicting multivariate volatility thresholds in global stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 345-369, April.
    3. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    6. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    7. Usman M. Umer, Metin Coskun, Kasim Kiraci, 2018. "Time-varying Return and Volatility Spillover among EAGLEs Stock Markets: A Multivariate GARCH Analysis," Journal of Finance and Economics Research, Geist Science, Iqra University, Faculty of Business Administration, vol. 3(1), pages 23-42, March.
    8. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306, Decembrie.
    9. Aboura, Sofiane & Chevallier, Julien, 2015. "Volatility returns with vengeance: Financial markets vs. commodities," Research in International Business and Finance, Elsevier, vol. 33(C), pages 334-354.
    10. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    11. Christodoulakis, George A., 2007. "Common volatility and correlation clustering in asset returns," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1263-1284, November.
    12. repec:dau:papers:123456789/13359 is not listed on IDEAS
    13. Corradi, Valentina & Distaso, Walter & Fernandes, Marcelo, 2012. "International market links and volatility transmission," Journal of Econometrics, Elsevier, vol. 170(1), pages 117-141.
    14. Kundu, Srikanta & Sarkar, Nityananda, 2016. "Return and volatility interdependences in up and down markets across developed and emerging countries," Research in International Business and Finance, Elsevier, vol. 36(C), pages 297-311.
    15. Bensafta, Kamel Malik & Semedo, Gervasio, 2009. "De la transmission de la volatilité à la contagion entre marchés boursiers : l’éclairage d’un modèle VAR non linéaire avec bris structurels en variance," L'Actualité Economique, Société Canadienne de Science Economique, vol. 85(1), pages 13-76, mars.
    16. Audrino, Francesco, 2006. "The impact of general non-parametric volatility functions in multivariate GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3032-3052, July.
    17. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    18. Taylor, Nicholas, 2007. "A note on the importance of overnight information in risk management models," Journal of Banking & Finance, Elsevier, vol. 31(1), pages 161-180, January.
    19. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    20. Ewing, Bradley T. & Malik, Farooq, 2005. "Re-examining the asymmetric predictability of conditional variances: The role of sudden changes in variance," Journal of Banking & Finance, Elsevier, vol. 29(10), pages 2655-2673, October.
    21. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usg:dp2005:2005-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joerg Baumberger (email available below). General contact details of provider: https://edirc.repec.org/data/vwasgch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.