IDEAS home Printed from
   My bibliography  Save this paper

A general multivariate threshold GARCH model with dynamic conditional correlations


  • Francesco Audrino


  • Fabio Trojani



We propose a new multivariate GARCH model with Dynamic Conditional Correlations that extends previous models by admitting multivariate thresholds in conditional volatilities and correlations. The model estimation is feasible in large dimensions and the positive deniteness of the conditional covariance matrix is easily ensured by the structure of the model. Thresholds in conditional volatilities and correlations are estimated from the data, together with all other model parameters. We study the performance of our model in three distinct applications to US stock and bond market data. Even if the conditional volatility functions of stock returns exhibit pronounced GARCH and threshold features, their conditional correlation dynamics depends on a very simple threshold structure with no local GARCH features. We obtain a similar result for the conditional correlations between government and corporate bond returns. On the contrary, we ¯nd both threshold and GARCH structures in the conditional correlations between stock and government bond returns. In all applications, our model improves signi¯cantly the in-sample and out-of-sample forecasting power for future conditional correlations with respect to other relevant multivariate GARCH models.

Suggested Citation

  • Francesco Audrino & Fabio Trojani, 2007. "A general multivariate threshold GARCH model with dynamic conditional correlations," University of St. Gallen Department of Economics working paper series 2007 2007-25, Department of Economics, University of St. Gallen.
  • Handle: RePEc:usg:dp2007:2007-25

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Becker, Kent G. & Finnerty, Joseph E. & Friedman, Joseph, 1995. "Economic news and equity market linkages between the U.S. and U.K," Journal of Banking & Finance, Elsevier, vol. 19(7), pages 1191-1210, October.
    2. Olivier Ledoit & Pedro Santa-Clara & Michael Wolf, 2003. "Flexible Multivariate GARCH Modeling with an Application to International Stock Markets," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 735-747, August.
    3. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    4. Kim, Sang W. & Rogers, John H., 1995. "International stock price spillovers and market liberalization: Evidence from Korea, Japan, and the United States," Journal of Empirical Finance, Elsevier, vol. 2(2), pages 117-133, June.
    5. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    6. Adrian Pagan, 1986. "Two Stage and Related Estimators and Their Applications," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 517-538.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    8. Koutmos, Gregory & Booth, G Geoffrey, 1995. "Asymmetric volatility transmission in international stock markets," Journal of International Money and Finance, Elsevier, vol. 14(6), pages 747-762, December.
    9. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    10. Bae, Kee-Hong & Andrew Karolyi, G., 1995. "Good news, band news and international spilovers of stock return volatility between Japan and the U.S," Pacific-Basin Finance Journal, Elsevier, vol. 3(1), pages 144-144, May.
    11. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    12. Fulvio Corsi & Francesco Audrino, 2007. "Realized Correlation Tick-by-Tick," University of St. Gallen Department of Economics working paper series 2007 2007-02, Department of Economics, University of St. Gallen.
    13. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    14. King, Mervyn A & Wadhwani, Sushil, 1990. "Transmission of Volatility between Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 5-33.
    15. Fabio Trojani & Francesco Audrino, 2006. "Estimating and predicting multivariate volatility thresholds in global stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 345-369.
    16. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245 Elsevier.
    17. Hamao, Yasushi & Masulis, Ronald W & Ng, Victor, 1990. "Correlations in Price Changes and Volatility across International Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 281-307.
    18. Audrino, Francesco, 2006. "Tree-Structured Multiple Regimes in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 338-353, July.
    19. Engle, Robert F & Ito, Takatoshi & Lin, Wen-Ling, 1990. "Meteor Showers or Heat Waves? Heteroskedastic Intra-daily Volatility in the Foreign Exchange Market," Econometrica, Econometric Society, vol. 58(3), pages 525-542, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Rezitis Anthony N & Stavropoulos Konstantinos S, 2011. "Price Transmission and Volatility in the Greek Broiler Sector: A Threshold Cointegration Analysis," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 9(1), pages 1-37, July.
    2. Boudt, Kris & Daníelsson, Jón & Laurent, Sébastien, 2013. "Robust forecasting of dynamic conditional correlation GARCH models," International Journal of Forecasting, Elsevier, vol. 29(2), pages 244-257.
    3. Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014. "The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options," International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
    4. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    5. Audrino, Francesco, 2011. "Forecasting correlations during the late-2000s financial crisis: short-run component, long-run component, and structural breaks," Economics Working Paper Series 1112, University of St. Gallen, School of Economics and Political Science.
    6. Fulvio Corsi & Francesco Audrino, 2012. "Realized Covariance Tick-by-Tick in Presence of Rounded Time Stamps and General Microstructure Effects," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 10(4), pages 591-616, September.
    7. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2009. "Modelling Conditional Correlations for Risk Diversification in Crude Oil Markets," CIRJE F-Series CIRJE-F-640, CIRJE, Faculty of Economics, University of Tokyo.
    8. Audrino, Francesco & Corsi, Fulvio, 2010. "Modeling tick-by-tick realized correlations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2372-2382, November.
    9. repec:eee:intfor:v:34:y:2018:i:1:p:45-63 is not listed on IDEAS
    10. Kuruppuarachchi, Duminda & Premachandra, I.M., 2016. "Information spillover dynamics of the energy futures market sector: A novel common factor approach," Energy Economics, Elsevier, vol. 57(C), pages 277-294.
    11. Li, Johnny Siu-Hang & Ng, Andrew C.Y. & Chan, Wai-Sum, 2015. "Managing financial risk in Chinese stock markets: Option pricing and modeling under a multivariate threshold autoregression," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 217-230.
    12. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.

    More about this item


    Multivariate GARCH models; Dynamic conditional correlations; Tree-structured GARCH models;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usg:dp2007:2007-25. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joerg Baumberger). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.