IDEAS home Printed from https://ideas.repec.org/p/unm/unumer/2016015.html
   My bibliography  Save this paper

Structural decompositions of energy consumption, energy intensity, emissions and emission intensity - A sectoral perspective: empirical evidence from WIOD over 1995 to 2009

Author

Listed:
  • Zhong, Sheng

    (UNU-MERIT)

Abstract

Using more than 68 million data points from the newly introduced World Input-Output Database (WIOD) over 1995 to 2009, this study investigates the historical dynamics of energy consumption, aggregate energy intensity, total emissions and total emission intensity at sectoral level by decomposing their relative changes in the input-output framework into five influencing factors: intensity effect, inter-industry structural effect, trade effect in intermediate inputs, structural change effect in final demand and total final demand effect. It identifies crucial empirical patterns that support UNIDO’s ISID initiative: increases in energy consumption and total emissions at sectoral level driven by economic growth can be partially or even largely offset by the efficiency technology related intensity effect and the intensity effect within sectors contributes the most to reductions in aggregate energy intensity and total emission intensity.

Suggested Citation

  • Zhong, Sheng, 2016. "Structural decompositions of energy consumption, energy intensity, emissions and emission intensity - A sectoral perspective: empirical evidence from WIOD over 1995 to 2009," MERIT Working Papers 2016-015, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
  • Handle: RePEc:unm:unumer:2016015
    as

    Download full text from publisher

    File URL: https://www.merit.unu.edu/publications/wppdf/2016/wp2016-015.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos A. Flores & Alfonso Flores-Lagunes & Dimitrios Kapetanakis, 2014. "Lessons From Quantile Panel Estimation of the Environmental Kuznets Curve," Econometric Reviews, Taylor & Francis Journals, vol. 33(8), pages 815-853, November.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Daniel L. Millimet & John A. List & Thanasis Stengos, 2003. "The Environmental Kuznets Curve: Real Progress or Misspecified Models?," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1038-1047, November.
    4. Hunt Allcott & Michael Greenstone, 2012. "Is There an Energy Efficiency Gap?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 3-28, Winter.
    5. Weber, Christopher L., 2009. "Measuring structural change and energy use: Decomposition of the US economy from 1997 to 2002," Energy Policy, Elsevier, vol. 37(4), pages 1561-1570, April.
    6. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    7. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    8. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    9. Zhang, ZhongXiang, 2003. "Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change," Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
    10. Marcel P. Timmer & Abdul Azeez Erumban & Bart Los & Robert Stehrer & Gaaitzen J. de Vries, 2014. "Slicing Up Global Value Chains," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 99-118, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
    2. Daniel Croner and Ivan Frankovic, 2018. "A Structural Decomposition Analysis of Global and National Energy Intensity Trends," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Yun-Hsun Huang & Jung-Hua Wu & Hao-Syuan Huang, 2021. "Analyzing the Driving Forces behind CO 2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea," Energies, MDPI, vol. 14(17), pages 1-14, August.
    4. Casey, Gregory, "undated". "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259959, Agricultural and Applied Economics Association.
    5. Liu, Yang & Zhong, Sheng, 2021. "Cross-Economy Dynamics in Energy Productivity: Evidence from 47 Economies over the Period 2000–2015," ADBI Working Papers 1215, Asian Development Bank Institute.
    6. Yetkiner, Hakan & Berk, Istemi, 2023. "Energy intensity and directed fiscal policy," Economic Systems, Elsevier, vol. 47(2).
    7. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    8. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    9. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    10. Hübler, Michael, 2011. "Technology diffusion under contraction and convergence: A CGE analysis of China," Energy Economics, Elsevier, vol. 33(1), pages 131-142, January.
    11. Pei-Ing Wu & Je-Liang Liou & Hung-Yi Chang, 2015. "Alternative exploration of EKC for $$\hbox {CO}_{2}$$ CO 2 emissions: inclusion of meta-technical ratio in quantile regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 57-73, January.
    12. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
    13. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    14. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    15. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    16. Lemoine, Derek, 2020. "General equilibrium rebound from energy efficiency innovation," European Economic Review, Elsevier, vol. 125(C).
    17. Du, Kerui & Liu, Xueyue & Zhao, Cheng, 2023. "Environmental regulation mitigates energy rebound effect," Energy Economics, Elsevier, vol. 125(C).
    18. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    19. Li, Zhen & Wu, Baijun & Wang, Danyang & Tang, Maogang, 2022. "Government mandatory energy-biased technological progress and enterprises' environmental performance: Evidence from a quasi-natural experiment of cleaner production standards in China," Energy Policy, Elsevier, vol. 162(C).
    20. Gregory Casey & Ryo Horii, 2019. "A Multi-factor Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change," ISER Discussion Paper 1051, Institute of Social and Economic Research, Osaka University.

    More about this item

    Keywords

    Structural decomposition; input-output model; energy; emissions; sustainable development;
    All these keywords.

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:unumer:2016015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ad Notten (email available below). General contact details of provider: https://edirc.repec.org/data/meritnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.