IDEAS home Printed from https://ideas.repec.org/p/sgc/wpaper/169.html
   My bibliography  Save this paper

The Eonomic Impact Of More Sustainable Water Use In Agriculture: A Computable General Equilibrium Analysis

Author

Listed:
  • Alvaro Calzadilla
  • Katrin Rehdanz
  • Richard S.J. Tol

    (Economic and Social Research Institute)

Abstract

Water problems are typically studied at the farm-level, the river–catchment-level or the country-level. About 70% of irrigation water is used for agriculture, and agricultural products are traded internationally. A full understanding of water use is impossible without understanding the international market for food and related products, such as textiles. Based on the global general equilibrium model GTAP-W, we offer a method for investigating the role of green (rain) and blue (irrigation) water resources in agriculture and within the context of international trade. Since problems related to groundwater availability are getting more severe in the future, we analyze the impact of different water use options for 2025 where data is readily available. We run two alternative scenarios. The first, called water crisis scenario, explores a deterioration of current trends and policies in the water sector. The second scenario, called sustainable water use scenario, assumes an improvement in policies and trends in the water sector and eliminates groundwater overdraft worldwide, increasing water allocation for the environment. In both scenarios, welfare gains or losses are not only associated with changes in agricultural water consumption. Under the water crisis scenario, welfare not only rises for regions where water consumption increases (China, South East Asia and the USA). Welfare gains are considerable for Japan and South Korea, Southeast Asia and Western Europe as well. These regions benefit from higher irrigated production and lower food prices. Alternatively, under the sustainable water use scenario, welfare losses not only affect regions where overdrafting is occurring. Welfare decreases in other regions as well. These results indicate that, for water use, there is a clear trade-off between economic welfare and environmental sustainability.

Suggested Citation

  • Alvaro Calzadilla & Katrin Rehdanz & Richard S.J. Tol, 2008. "The Eonomic Impact Of More Sustainable Water Use In Agriculture: A Computable General Equilibrium Analysis," Working Papers FNU-169, Research unit Sustainability and Global Change, Hamburg University, revised Dec 2008.
  • Handle: RePEc:sgc:wpaper:169
    as

    Download full text from publisher

    File URL: http://www.fnu.zmaw.de/fileadmin/fnu-files/publication/working-papers/CGEirrigationWP.pdf
    File Function: First version, 2008
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scott McDonald & Sherman Robinson & Karen Thierfelder, 2007. "Globe: A SAM Based Global CGE Model using GTAP Data," Departmental Working Papers 14, United States Naval Academy Department of Economics.
    2. Goodman, D. Jay, 2000. "More Reservoirs Or Transfers? A Computable General Equilibrium Analysis Of Projected Water Shortages In The Arkansas River Basin," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-16, December.
    3. Abdul Kamara & Hilmy Sally, 2004. "Water management options for food security in South Africa: scenarios, simulations and policy implications," Development Southern Africa, Taylor & Francis Journals, vol. 21(2), pages 365-384.
    4. Noelwah R. Netusil & Thomas R. Harris & Chang K. Seung & Jeffrey E. Englin, 2000. "Impacts of water reallocation: A combined computable general equilibrium and recreation demand model approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 34(4), pages 473-487.
    5. Decaluwe, B. & Patry, A. & Savard, L., 1999. "`When Water Is No Longer Heaven Sent: Comparative Pricing Analysis in an AGE Model," Papers 9905, Laval - Recherche en Politique Economique.
    6. Yang, Hong & Zhang, Xiaohe & Zehnder, Alexander J. B., 2003. "Water scarcity, pricing mechanism and institutional reform in northern China irrigated agriculture," Agricultural Water Management, Elsevier, vol. 61(2), pages 143-161, June.
    7. Anthony Letsoalo & James Blignaut & Theuns de Wet & Martin de Wit & Sebastiaan Hess & Richard S.J. Tol & Jan van Heerden, 2005. "Triple Dividends Of Water Consumption Charges In South Africa," Working Papers FNU-62, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2005.
    8. de Fraiture, Charlotte & Cai, X & Amarasinghe, Upali & Rosegrant, M. & Molden, David, 2004. "Does international cereal trade save water?: the impact of virtual water trade on global water use," IWMI Research Reports H035342, International Water Management Institute.
    9. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    10. Dinar, Ariel & Yaron, Dan, 1992. "Adoption and abandonment of irrigation technologies," Agricultural Economics, Blackwell, vol. 6(4), pages 315-332, April.
    11. Hiro Lee & Joaquim Oliveira Martins & Dominique van der Mensbrugghe, 1994. "The OECD Green Model: An Updated Overview," OECD Development Centre Working Papers 97, OECD Publishing.
    12. Tsur, Yacov & Dinar, Ariel & Doukkali, Rachid M. & Roe, Terry, 2004. "Irrigation water pricing: policy implications based on international comparison," Environment and Development Economics, Cambridge University Press, vol. 9(6), pages 735-755, December.
    13. Maria Berrittella & Katrin Rehdanz & Arjen Y. Hoekstra & Roberto Roson & Richard S.J. Tol, 2006. "The Economic Impact Of Restricted Water Supply: A Computable General Equilibrium Analysis," Working Papers FNU-93, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2006.
    14. Rehdanz, Katrin & Berrittella, Maria & S.J. Tol, Richard & Zhang, Jian, 2008. "The Impact of Trade Liberalization on Water Use: A Computable General Equilibrium Analysis," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 23, pages 631-655.
    15. Burniaux, Jean-Marc & Truong Truong, 2002. "GTAP-E: An Energy-Environmental Version of the GTAP Model," GTAP Technical Papers 923, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    16. Bluemling, Bettina & Yang, Hong & Pahl-Wostl, Claudia, 2007. "Making water productivity operational--A concept of agricultural water productivity exemplified at a wheat-maize cropping pattern in the North China plain," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 11-23, July.
    17. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Wichelns, Dennis, 2003. "Enhancing water policy discussions by including analysis of non-water inputs and farm-level constraints," Agricultural Water Management, Elsevier, vol. 62(2), pages 93-103, September.
    19. Maria Berrittella & Katrin Rehdanz & Roberto Roson & Richard S.J. Tol, 2006. "The Economic Impact Of Water Pricing: A Computable General Equilibrium Analysis," Working Papers FNU-96, Research unit Sustainability and Global Change, Hamburg University, revised Jan 2006.
    20. Easter, K. W., 2005. "Cost recovery and water pricing for irrigation and drainage projects," IWMI Working Papers H046176, International Water Management Institute.
    21. Pereira, Luis S., 1999. "Higher performance through combined improvements in irrigation methods and scheduling: a discussion," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 153-169, May.
    22. Diao, Xinshen & Roe, Terry, 2003. "Can a water market avert the "double-whammy" of trade reform and lead to a "win-win" outcome?," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 708-723, May.
    23. Maria Berrittella & Katrin Rehdanz & Richard S.J. Tol, 2006. "The Economic Impact of the South-North Water Transfer Project in China: A Computable General Equilibrium Analysis," Working Papers 2006.154, Fondazione Eni Enrico Mattei.
    24. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    25. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    26. Mailhol, J. C. & Zairi, A. & Slatni, A. & Ben Nouma, B. & El Amani, H., 2004. "Analysis of irrigation systems and irrigation strategies for durum wheat in Tunisia," Agricultural Water Management, Elsevier, vol. 70(1), pages 19-37, October.
    27. de Fraiture, Charlotte & Cai, Ximing & Amarasinghe, Upali A. & Rosegrant, Mark W. & Molden, David J., 2004. "Does international cereal trade save water? The impact of virtual water trade on global water use," IWMI Research Reports 92832, International Water Management Institute.
    28. Strzepek, Kenneth M. & Yohe, Gary W. & Tol, Richard S.J. & Rosegrant, Mark W., 2008. "The value of the high Aswan Dam to the Egyptian economy," Ecological Economics, Elsevier, vol. 66(1), pages 117-126, May.
    29. Ariel Dinar & Dan Yaron, 1992. "Adoption and abandonment of irrigation technologies," Agricultural Economics, International Association of Agricultural Economists, vol. 6(4), pages 315-332, April.
    30. Lilienfeld, Amy & Asmild, Mette, 2007. "Estimation of excess water use in irrigated agriculture: A Data Envelopment Analysis approach," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 73-82, December.
    31. van Heerden, Jan H. & Blignaut, James & Horridge, Mark, 2008. "Integrated water and economic modelling of the impacts of water market instruments on the South African economy," Ecological Economics, Elsevier, vol. 66(1), pages 105-116, May.
    32. K. William Easter & Yang Liu, 2005. "Cost Recovery and Water Pricing for Irrigation and Drainage : What Works?," World Bank Publications - Reports 9648, The World Bank Group.
    33. Seagraves, J.A. & Easter, K. William, 1982. "Pricing for Irrigation Water," Economic Reports 8445, University of Minnesota, Department of Applied Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anne-Kathrin Faust & Camille Gonseth & Marc Vielle, 2012. "The economic impact of climate driven changes in water availability in Switzerland," EcoMod2012 4177, EcoMod.
    2. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    3. Nicholas Rivers & Steven Groves, 2013. "The Welfare Impact of Self-supplied Water Pricing in Canada: A Computable General Equilibrium Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(3), pages 419-445, July.
    4. Howard, Peter & Sterner, Thomas, 2014. "Raising the Temperature on Food Prices: Climate Change, Food Security, and the Social Cost of Carbon," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170648, Agricultural and Applied Economics Association.
    5. Orecchia, Carlo & Parrado, Ramiro, 2013. "A Quantitative Assessment of the Implications of Including non-CO2 Emissions in the European ETS," Climate Change and Sustainable Development 162416, Fondazione Eni Enrico Mattei (FEEM).
    6. Bosello, Francesco & Eboli, Fabio & Parrado, Ramiro & Nunes, Paulo A.L.D. & Ding, Helen & Rosa, Renato, 2011. "The economic assessment of changes in ecosystem services: and application of the CGE methodology," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 11(01), pages 1-30, November.
    7. Tewodros Negash Kahsay & Onno Kuik & Roy Brouwer & Pieter Van Der Zaag, 2017. "The Economy-Wide Impacts Of Climate Change And Irrigation Development In The Nile Basin: A Computable General Equilibrium Approach," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-30, February.
    8. Jaume González, 2011. "Assessing the Macroeconomic Impact of Water Supply Restrictions Through an Input–Output Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2335-2347, July.
    9. Feng Wu & Jinyan Zhan & Qian Zhang & Zhongxiao Sun & Zhan Wang, 2014. "Evaluating Impacts of Industrial Transformation on Water Consumption in the Heihe River Basin of Northwest China," Sustainability, MDPI, vol. 6(11), pages 1-14, November.
    10. Chokri Thabet, 2014. "Water Policy and Poverty Reduction in Rural Area: A Comparative Economy Wide Analysis for Morocco and Tunisia," Working Papers 860, Economic Research Forum, revised Nov 2014.
    11. Bosello, Francesco & Orecchia, Carlo & Raitzer, David A., 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," MITP: Mitigation, Innovation and Transformation Pathways 250260, Fondazione Eni Enrico Mattei (FEEM).
    12. Frank van Tongeren & Robert Koopman & Stephen Karingi & John Reilly & Joseph Francois, 2021. "Back to the Future: A 25-Year Retrospective on GTAP and the Shaping of a New Agenda," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 3, pages 41-93, World Scientific Publishing Co. Pte. Ltd..
    13. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2011. "The GTAP-W model: Accounting for water use in agriculture," Kiel Working Papers 1745, Kiel Institute for the World Economy (IfW Kiel).
    14. Li Jiang & Feng Wu & Yu Liu & Xiangzheng Deng, 2014. "Modeling the Impacts of Urbanization and Industrial Transformation on Water Resources in China: An Integrated Hydro-Economic CGE Analysis," Sustainability, MDPI, vol. 6(11), pages 1-15, October.
    15. Wei Yang & Junnian Song & Yoshiro Higano & Jie Tang, 2015. "An Integrated Simulation Model for Dynamically Exploring the Optimal Solution to Mitigating Water Scarcity and Pollution," Sustainability, MDPI, vol. 7(2), pages 1-24, February.
    16. Bosello, Francesco & Marangoni, Giacomo & Orecchia, Carlo & Raitzer, David A. & Tavoni, Massimo, 2016. "The Cost of Climate Stabilization in Southeast Asia, a Joint Assessment with Dynamic Optimization and CGE Models," MITP: Mitigation, Innovation and Transformation Pathways 251810, Fondazione Eni Enrico Mattei (FEEM).
    17. Ouraich, Ismail & Tyner, Wallace E., 2014. "Climate change impacts on Moroccan agriculture and the whole economy: An analysis of the impacts of the Plan Maroc Vert in Morocco," WIDER Working Paper Series 083, World Institute for Development Economic Research (UNU-WIDER).
    18. Jason F. L. Koopman & Onno Kuik & Richard S. J. Tol & Roy Brouwer, 2017. "The potential of water markets to allocate water between industry, agriculture, and public water utilities as an adaptation mechanism to climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 325-347, February.
    19. Yu Liu & Xiaohong Hu & Qian Zhang & Mingbo Zheng, 2017. "Improving Agricultural Water Use Efficiency: A Quantitative Study of Zhangye City Using the Static CGE Model with a CES Water−Land Resources Account," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    20. Nicholas Kilimani, 2014. "Water Taxation and the Double Dividend Hypothesis," Working Papers 201451, University of Pretoria, Department of Economics.
    21. Jing Liu & Thomas Hertel & Farzad Taheripour, 2016. "Analyzing Future Water Scarcity in Computable General Equilibrium Models," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Palatnik, Ruslana & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy be Beneficial for the Israeli Economy? A Computable General Equilibrium Analysis," Conference papers 331792, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Maria Berrittella & Katrin Rehdanz & Richard S.J. Tol, 2006. "The Economic Impact of the South-North Water Transfer Project in China: A Computable General Equilibrium Analysis," Working Papers 2006.154, Fondazione Eni Enrico Mattei.
    4. Berrittella, Maria & Rehdanz, Katrin & Roson, Roberto & Tol, Richard S.J., 2007. "The Economic Impact of Water Taxes: A Computable General Equilibrium Analysis with an International Data Set," Conference papers 331655, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Maria Berrittella & Katrin Rehdanz & Arjen Y. Hoekstra & Roberto Roson & Richard S.J. Tol, 2006. "The Economic Impact Of Restricted Water Supply: A Computable General Equilibrium Analysis," Working Papers FNU-93, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2006.
    6. Maria Berrittella & Katrin Rehdanz & Roberto Roson & Richard S.J. Tol, 2006. "The Economic Impact Of Water Pricing: A Computable General Equilibrium Analysis," Working Papers FNU-96, Research unit Sustainability and Global Change, Hamburg University, revised Jan 2006.
    7. Rehdanz, Katrin & Berrittella, Maria & S.J. Tol, Richard & Zhang, Jian, 2008. "The Impact of Trade Liberalization on Water Use: A Computable General Equilibrium Analysis," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 23, pages 631-655.
    8. Nicholas Kilimani, 2014. "Water Taxation and the Double Dividend Hypothesis," Working Papers 201451, University of Pretoria, Department of Economics.
    9. Dinar, Ariel, 2012. "Economy-wide implications of direct and indirect policy interventions in the water sector: lessons from recent work and future research needs," Policy Research Working Paper Series 6068, The World Bank.
    10. Strzepek, Kenneth M. & Yohe, Gary W. & Tol, Richard S.J. & Rosegrant, Mark W., 2008. "The value of the high Aswan Dam to the Egyptian economy," Ecological Economics, Elsevier, vol. 66(1), pages 117-126, May.
    11. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    12. Roberto Ponce & Francesco Bosello & Carlo Giupponi, 2012. "Integrating Water Resources into Computable General Equilibrium Models - A Survey," Working Papers 2012.57, Fondazione Eni Enrico Mattei.
    13. Kuiper, Marijke, 2007. "What if not all land is created equal? The role of heterogeneous land when assessing the impact of trade liberalization on developing countries," Conference papers 331658, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2011. "The GTAP-W model: Accounting for water use in agriculture," Kiel Working Papers 1745, Kiel Institute for the World Economy (IfW Kiel).
    15. Anne-Kathrin Faust & Camille Gonseth & Marc Vielle, 2012. "The economic impact of climate driven changes in water availability in Switzerland," EcoMod2012 4177, EcoMod.
    16. Chokri Thabet, 2014. "Water Policy and Poverty Reduction in Rural Area: A Comparative Economy Wide Analysis for Morocco and Tunisia," Working Papers 860, Economic Research Forum, revised Nov 2014.
    17. Dimaranan, Betina & Duc, Le Thuc & Martin, Will, 2005. "Potential Economic Impacts of Merchandise Trade Liberalization under Viet Nam’s Accession to the WTO," Conference papers 331403, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Calzadilla, Alvaro & Zhu, Tingju & Rehdanz, Katrin & Tol, Richard S.J. & Ringler, Claudia, 2013. "Economywide impacts of climate change on agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 93(C), pages 150-165.
    19. Alvaro Calzadilla & Tingju Zhu & Katrin Rehdanz & Richard S.J. Tol & Claudia Ringler, "undated". "Economy-wide Impacts of Climate on Agriculture in Sub-Saharan Africa," Working Papers FNU-170, Research unit Sustainability and Global Change, Hamburg University.
    20. Mohamed A. Chemingui & Chokri Thabet, 2016. "Economy-Wide Analysis of Alternative Water Management Policies: A Comparative Analysis for Morocco and Tunisia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-27, December.

    More about this item

    Keywords

    Agricultural Water Use; Computable General Equilibrium; Groundwater Use; Irrigation; Sustainable Water Use; Water Scarcity;
    All these keywords.

    JEL classification:

    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • Q17 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agriculture in International Trade
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgc:wpaper:169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Uwe Schneider (email available below). General contact details of provider: https://edirc.repec.org/data/zmhamde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.