IDEAS home Printed from https://ideas.repec.org/p/sef/csefwp/603.html
   My bibliography  Save this paper

‘Like with Like’ or ‘Do Like’? Modelling Peer Effects in The Classroom

Author

Listed:

Abstract

This paper reviews the recent peer effects literature and showcases the simultaneous autoregressive model, which integrates aspects of multiple regression modelling, instrumental variables, social network analysis and longitudinal analysis. It describes state of the art techniques for making inferences using survey data, clarifies the assumptions made by statistical models and provides further evidence on the impact of peers in education. The paper includes a case study using data from an Italian survey to study peer effects in relation to university enrollment. The model includes components that control for endogenous, exogenous and correlated peer effects as well as different forms of selection. The evidence presented in the paper suggests that endogenous peer effects have a statistically and substantively significant influence on the probability of enrolling at university, measured over one year. Sensitivity tests suggest that the results of the estimation are robust to confounding due to latent homophily and other potential sources of bias.

Suggested Citation

  • Giovanni Abbiati & Jonathan Pratschke, 2021. "‘Like with Like’ or ‘Do Like’? Modelling Peer Effects in The Classroom," CSEF Working Papers 603, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
  • Handle: RePEc:sef:csefwp:603
    as

    Download full text from publisher

    File URL: http://www.csef.it/WP/wp603.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Ammermueller & Jörn-Steffen Pischke, 2009. "Peer Effects in European Primary Schools: Evidence from the Progress in International Reading Literacy Study," Journal of Labor Economics, University of Chicago Press, vol. 27(3), pages 315-348, July.
    2. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    3. Julian R. Betts & Darlene Morell, 1999. "The Determinants of Undergraduate Grade Point Average: The Relative Importance of Family Background, High School Resources, and Peer Group Effects," Journal of Human Resources, University of Wisconsin Press, vol. 34(2), pages 268-293.
    4. Mark Tranmer & David Steel & William J. Browne, 2014. "Multiple-membership multiple-classification models for social network and group dependences," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(2), pages 439-455, February.
    5. Cohen-Cole, Ethan & Fletcher, Jason M., 2008. "Is obesity contagious? Social networks vs. environmental factors in the obesity epidemic," Journal of Health Economics, Elsevier, vol. 27(5), pages 1382-1387, September.
    6. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    7. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 531-542.
    8. Victor Lavy & Olmo Silva & Felix Weinhardt, 2009. "The Good, the Bad and the Average: Evidence on the Scale and Nature of Ability Peer Effects in Schools," NBER Working Papers 15600, National Bureau of Economic Research, Inc.
    9. Gioia De Melo, 2011. "Peer effects identified through social networks. Evidence from Uruguayan schools," Department of Economics University of Siena 627, Department of Economics, University of Siena.
    10. Olugbenga Ajilore, 2015. "Identifying peer effects using spatial analysis: the role of peers on risky sexual behavior," Review of Economics of the Household, Springer, vol. 13(3), pages 635-652, September.
    11. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    12. Irani Arraiz & David M. Drukker & Harry H. Kelejian & Ingmar R. Prucha, 2010. "A Spatial Cliff‐Ord‐Type Model With Heteroskedastic Innovations: Small And Large Sample Results," Journal of Regional Science, Wiley Blackwell, vol. 50(2), pages 592-614, May.
    13. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    14. Macdonald-Wallis, Kyle & Jago, Russell & Page, Angie S. & Brockman, Rowan & Thompson, Janice L., 2011. "School-based friendship networks and children's physical activity: A spatial analytical approach," Social Science & Medicine, Elsevier, vol. 73(1), pages 6-12, July.
    15. A. James O'Malley & Felix Elwert & J. Niels Rosenquist & Alan M. Zaslavsky & Nicholas A. Christakis, 2014. "Estimating peer effects in longitudinal dyadic data using instrumental variables," Biometrics, The International Biometric Society, vol. 70(3), pages 506-515, September.
    16. Antoni Calvó-Armengol & Eleonora Patacchini & Yves Zenou, 2009. "Peer Effects and Social Networks in Education," Review of Economic Studies, Oxford University Press, vol. 76(4), pages 1239-1267.
    17. Xiaodong Liu, 2014. "Identification and Efficient Estimation of Simultaneous Equations Network Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 516-536, October.
    18. Scott E. Carrell & Bruce I. Sacerdote & James E. West, 2013. "From Natural Variation to Optimal Policy? The Importance of Endogenous Peer Group Formation," Econometrica, Econometric Society, vol. 81(3), pages 855-882, May.
    19. David S. Lyle, 2007. "Estimating and Interpreting Peer and Role Model Effects from Randomly Assigned Social Groups at West Point," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 289-299, May.
    20. Graham, Bryan S. & Hahn, Jinyong, 2005. "Identification and estimation of the linear-in-means model of social interactions," Economics Letters, Elsevier, vol. 88(1), pages 1-6, July.
    21. David M. Drukker & Peter Egger & Ingmar R. Prucha, 2013. "On Two-Step Estimation of a Spatial Autoregressive Model with Autoregressive Disturbances and Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 686-733, August.
    22. Xu Lin, 2010. "Identifying Peer Effects in Student Academic Achievement by Spatial Autoregressive Models with Group Unobservables," Journal of Labor Economics, University of Chicago Press, vol. 28(4), pages 825-860, October.
    23. Chih‐Sheng Hsieh & Lung Fei Lee, 2016. "A Social Interactions Model with Endogenous Friendship Formation and Selectivity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 301-319, March.
    24. Lung-fei Lee & Xiaodong Liu & Xu Lin, 2010. "Specification and estimation of social interaction models with network structures," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 145-176, July.
    25. Xu Lin, 2015. "Utilizing spatial autoregressive models to identify peer effects among adolescents," Empirical Economics, Springer, vol. 49(3), pages 929-960, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    2. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    3. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    4. Fortin, Bernard & Yazbeck, Myra, 2015. "Peer effects, fast food consumption and adolescent weight gain," Journal of Health Economics, Elsevier, vol. 42(C), pages 125-138.
    5. Boucher, Vincent & Fortin, Bernard, 2015. "Some Challenges in the Empirics of the Effects of Networks," IZA Discussion Papers 8896, Institute of Labor Economics (IZA).
    6. Dogan, Osman & Taspinar, Suleyman & Bera, Anil K., 2017. "Simple Tests for Social Interaction Models with Network Structures," MPRA Paper 82828, University Library of Munich, Germany.
    7. Hsieh, Chih-Sheng & Lin, Xu & Patacchini, Eleonora, 2019. "Social Interaction Methods," CEPR Discussion Papers 14141, C.E.P.R. Discussion Papers.
    8. Matias Berthelon & Eric Bettinger & Diana I. Kruger & Alejandro Montecinos-Pearce, 2019. "The Structure of Peers: The Impact of Peer Networks on Academic Achievement," Research in Higher Education, Springer;Association for Institutional Research, vol. 60(7), pages 931-959, November.
    9. Izaguirre, Alejandro & Di Capua, Laura, 2020. "Exploring peer effects in education in Latin America and the Caribbean," Research in Economics, Elsevier, vol. 74(1), pages 73-86.
    10. Chung, Bobby W., 2020. "Peers’ parents and educational attainment: The exposure effect," Labour Economics, Elsevier, vol. 64(C).
    11. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
    12. Rainone, Edoardo, 2020. "The network nature of over-the-counter interest rates," Journal of Financial Markets, Elsevier, vol. 47(C).
    13. Eleonora Patacchini & Edoardo Rainone, 2017. "Social Ties and the Demand for Financial Services," Journal of Financial Services Research, Springer;Western Finance Association, vol. 52(1), pages 35-88, October.
    14. Patacchini, Eleonora & Rainone, Edoardo & Zenou, Yves, 2017. "Heterogeneous peer effects in education," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 190-227.
    15. Topa, Giorgio & Zenou, Yves, 2015. "Neighborhood and Network Effects," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 561-624, Elsevier.
    16. Oleg Poldin & Diliara Valeeva & Maria Yudkevich, 2016. "Which Peers Matter: How Social Ties Affect Peer-group Effects," Research in Higher Education, Springer;Association for Institutional Research, vol. 57(4), pages 448-468, June.
    17. Patacchini, Eleonora & Arduini, Tiziano, 2016. "Residential choices of young Americans," Journal of Housing Economics, Elsevier, vol. 34(C), pages 69-81.
    18. Wang, Haining & Cheng, Zhiming & Smyth, Russell, 2018. "Do migrant students affect local students’ academic achievements in urban China?," Economics of Education Review, Elsevier, vol. 63(C), pages 64-77.
    19. Edoardo Rainone, 2015. "Testing information diffusion in the decentralized unsecured market for euro funds," Temi di discussione (Economic working papers) 1022, Bank of Italy, Economic Research and International Relations Area.
    20. Martellosio, Federico & Hillier, Grant, 2020. "Adjusted QMLE for the spatial autoregressive parameter," Journal of Econometrics, Elsevier, vol. 219(2), pages 488-506.

    More about this item

    Keywords

    Peer effects; Simultaneous auto-regressive models; Education; Social inequalities; University enrollment; Italy.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sef:csefwp:603. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cssalit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Maria Carannante (email available below). General contact details of provider: https://edirc.repec.org/data/cssalit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.