IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-08-15.html
   My bibliography  Save this paper

Economic Analysis of a Japanese Air Pollution Regulation: An Optimal Retirement Problem under Vehicle Type Regulation in the NOx–Particulate Matter Law

Author

Listed:
  • Iwata, Kazuyuki
  • Arimura, Toshi

Abstract

This paper empirically examines the vehicle type regulation that was introduced under the Automobile Nitrogen Oxides–Particulate Matter Law to mitigate air pollution problems in Japanese metropolitan areas. The vehicle type regulation effectively sets various timings of vehicle retirement by the first registration year and by type. However, there was no consideration of cost or efficiency in choosing the timing of retirement. We set and solve an optimal problem to maximize the social net benefit under the current framework of the vehicle type regulation. The analysis finds that the net benefit can increase by about 104 percent if the optimal retirement timing is chosen. Further, we confirm that even a simple alteration of retirement timing can increase the social net benefit by 13 percent. Thus, we confirm the importance of an ex-ante quantitative policy evaluation, a regulatory impact analysis, from the viewpoint of efficiency.

Suggested Citation

  • Iwata, Kazuyuki & Arimura, Toshi, 2008. "Economic Analysis of a Japanese Air Pollution Regulation: An Optimal Retirement Problem under Vehicle Type Regulation in the NOx–Particulate Matter Law," RFF Working Paper Series dp-08-15, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-08-15
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/RFF-DP-08-15.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lumbreras, J. & Valdés, M. & Borge, R. & Rodriguez, M.E., 2008. "Assessment of vehicle emissions projections in Madrid (Spain) from 2004 to 2012 considering several control strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 646-658, May.
    2. Anna Alberini & Winston Harrington & Virginia McConnell, 1995. "Determinants of Participation in Accelerated Vehicle-Retirement Programs," RAND Journal of Economics, The RAND Corporation, vol. 26(1), pages 93-112, Spring.
    3. Viscusi, W Kip & Aldy, Joseph E, 2003. "The Value of a Statistical Life: A Critical Review of Market Estimates throughout the World," Journal of Risk and Uncertainty, Springer, vol. 27(1), pages 5-76, August.
    4. Alberini, Anna & Harrington, Winston & McConnell, Virginia, 1996. "Estimating an Emissions Supply Function from Accelerated Vehicle Retirement Programs," The Review of Economics and Statistics, MIT Press, vol. 78(2), pages 251-265, May.
    5. repec:reg:rpubli:282 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tatsuki Inoue & Nana Nunokawa & Daisuke Kurisu & Kota Ogasawara, 2019. "Particulate Air Pollution, Birth Outcomes, and Infant Mortality: Evidence from Japan's Automobile Emission Control Law of 1992," Papers 1905.04417, arXiv.org, revised Dec 2019.
    2. Huang, Jian & Leng, Mingming & Liang, Liping & Luo, Chunlin, 2014. "Qualifying for a government’s scrappage program to stimulate consumers’ trade-in transactions? Analysis of an automobile supply chain involving a manufacturer and a retailer," European Journal of Operational Research, Elsevier, vol. 239(2), pages 363-376.
    3. Yushi Kunugi & Toshi H. Arimura & Kazuyuki Iwata & Eiji Komatsu & Yoshie Hirayama, 2017. "Cost-efficient strategy for reducing particulate matter 2.5 in the Tokyo Metropolitan area:An integrated approach with aerosol and economic models," Working Papers 1709, Waseda University, Faculty of Political Science and Economics.
    4. Shuhei Nishitateno & Paul J. Burke, 2020. "Have Vehicle Registration Restrictions Improved Urban Air Quality In Japan?," Contemporary Economic Policy, Western Economic Association International, vol. 38(3), pages 448-459, July.
    5. Kazuyuki Iwata & Toshi H. Arimura & Tetsuya Shimane, 2014. "The effectiveness of vehicle emission control policies: Evidence from Japanese experience," Working Papers e077, Tokyo Center for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laborda, Juan & Moral, María J., 2019. "Scrappage by age: Cash for Clunkers matters!," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 488-504.
    2. Nishitateno, Shuhei & Burke, Paul J., 2021. "Willingness to pay for clean air: Evidence from diesel vehicle registration restrictions in Japan," Regional Science and Urban Economics, Elsevier, vol. 88(C).
    3. Lenski, Shoshannah M. & Keoleian, Gregory A. & Moore, Michael R., 2013. "An assessment of two environmental and economic benefits of ‘Cash for Clunkers’," Ecological Economics, Elsevier, vol. 96(C), pages 173-180.
    4. Müller, Andrea & Heimeshoff, Ulrich, 2013. "Evaluating the Causal Effects of Cash-for-Clunkers Programs in Selected Countries: Success or Failure?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79802, Verein für Socialpolitik / German Economic Association.
    5. Fullerton, Don & West, Sarah E., 2002. "Can Taxes on Cars and on Gasoline Mimic an Unavailable Tax on Emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 43(1), pages 135-157, January.
    6. Balaguer, Jacint & Pernías, José C. & Ripollés, Jordi, 2023. "Is vehicle scrapping affected by low-emission zones? The case of Madrid," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    7. Yamamoto, Toshiyuki & Madre, Jean-Loup & Kitamura, Ryuichi, 2004. "An analysis of the effects of French vehicle inspection program and grant for scrappage on household vehicle transaction," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 905-926, December.
    8. Werner Antweiler & Sumeet Gulati, 2013. "Market-Based Policies for Green Motoring in Canada," Canadian Public Policy, University of Toronto Press, vol. 39(s2), pages 81-94, August.
    9. Alberini, Anna & Bareit, Markus & Filippini, Massimo & Martinez-Cruz, Adan L., 2018. "The impact of emissions-based taxes on the retirement of used and inefficient vehicles: The case of Switzerland," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 234-258.
    10. Harrington, Winston & McConnell, Virginia & Alberini, Anna, 1998. "Fleet Turnover and Old Car Scrap Policies," RFF Working Paper Series dp-98-23, Resources for the Future.
    11. Kavalec, Chris & Setiawan, Winardi, 1997. "An analysis of accelerated vehicle retirement programs using a discrete choice personal vehicle model," Transport Policy, Elsevier, vol. 4(2), pages 95-107, April.
    12. Tomohara, Akinori & Xue, Jian, 2009. "Motorcycles retirement program: Choosing the appropriate regulatory framework," Journal of Policy Modeling, Elsevier, vol. 31(1), pages 126-129.
    13. Lorentziadis, Panos L. & Vournas, Stylianos G., 2011. "A quantitative model of accelerated vehicle-retirement induced by subsidy," European Journal of Operational Research, Elsevier, vol. 211(3), pages 623-629, June.
    14. Jie Lin & Cynthia Chen & Debbie Niemeier, 2008. "An analysis on long term emission benefits of a government vehicle fleet replacement plan in northern illinois," Transportation, Springer, vol. 35(2), pages 219-235, March.
    15. Sandra Schaffner & Hannes Spengler, 2005. "Der Einfluss unbeobachteter Heterogenität auf kompensatorische Lohndifferentiale und den Wert eines statistischen Lebens: eine mikroökonometrische Parallelanalyse mit IABS und SOEP," Discussion Papers of DIW Berlin 539, DIW Berlin, German Institute for Economic Research.
    16. French, Michael T. & Gumus, Gulcin & Homer, Jenny F., 2009. "Public policies and motorcycle safety," Journal of Health Economics, Elsevier, vol. 28(4), pages 831-838, July.
    17. Gopal K. Basak & Chandramauli Chakraborty & Pranab Kumar Das, 2021. "Optimal Lockdown Strategy in a Pandemic: An Exploratory Analysis for Covid-19," Papers 2109.02512, arXiv.org.
    18. Aaron Sojourner, "undated". "Partial identification of willingness-to-pay using shape restrictions with an application to the value of a statistical life," Working Papers 0110, Human Resources and Labor Studies, University of Minnesota (Twin Cities Campus).
    19. Devi, P. Indira & Shanmugam, K.R. & Jayasree, M.G., 2012. "Compensating Wages for Occupational Risks of Farm Workers in India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 67(2), pages 1-12.
    20. Thomas Kniesner & W. Viscusi & James Ziliak, 2014. "Willingness to accept equals willingness to pay for labor market estimates of the value of a statistical life," Journal of Risk and Uncertainty, Springer, vol. 48(3), pages 187-205, June.

    More about this item

    Keywords

    air pollution; regulatory impact analysis; NOx-PM law; cost–benefit analysis; optimal retirement model;
    All these keywords.

    JEL classification:

    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-08-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.