IDEAS home Printed from https://ideas.repec.org/p/qld/uq2004/448.html
   My bibliography  Save this paper

A Unifying Impossibility Theorem

Author

Abstract

This paper considers social choice correspondences assigning a choice set to each non-empty subset of social alternatives. We impose three requirements on these correspondences: unanimity, independence of preferences over infeasible alternatives and choice consistency with respect to choices out of all possible alternatives. With more than three social alternatives and the universal preference domain, any social choice correspondence that satisfies our requirements is serially dictatorial. A number of known impossibility theorems — including Arrow’s Impossibility Theorem, the Muller-Satterthwaite Theorem and the impossibility theorem under strategic candidacy — follow as corollaries. Our new proof highlights the common logical underpinnings behind these theorems.

Suggested Citation

  • Priscilla Man & Shino Takayama, 2012. "A Unifying Impossibility Theorem," Discussion Papers Series 448, School of Economics, University of Queensland, Australia.
  • Handle: RePEc:qld:uq2004:448
    as

    Download full text from publisher

    File URL: http://www.uq.edu.au/economics/abstract/448.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lars Ehlers & John A. Weymark, 2003. "Candidate stability and nonbinary social choice," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 22(2), pages 233-243, September.
    2. Lin Zhou & Stephen Ching, 2002. "Multi-valued strategy-proof social choice rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(3), pages 569-580.
    3. Barbera, Salvador & Dutta, Bhaskar & Sen, Arunava, 2005. "Corrigendum to "Strategy-proof social choice correspondences" [J. Econ. Theory 101 (2001) 374-394]," Journal of Economic Theory, Elsevier, vol. 120(2), pages 275-275, February.
    4. Muller, Eitan & Satterthwaite, Mark A., 1977. "The equivalence of strong positive association and strategy-proofness," Journal of Economic Theory, Elsevier, vol. 14(2), pages 412-418, April.
    5. Gevers, Louis, 1979. "On Interpersonal Comparability and Social Welfare Orderings," Econometrica, Econometric Society, vol. 47(1), pages 75-89, January.
    6. Dutta, Bhaskar & Jackson, Matthew O & Le Breton, Michel, 2001. "Strategic Candidacy and Voting Procedures," Econometrica, Econometric Society, vol. 69(4), pages 1013-1037, July.
    7. Karni, Edi & Schmeidler, David, 1976. "Independence of nonfeasible alternatives, and independence of nonoptimal alternatives," Journal of Economic Theory, Elsevier, vol. 12(3), pages 488-493, June.
    8. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    9. Kirman, Alan P. & Sondermann, Dieter, 1972. "Arrow's theorem, many agents, and invisible dictators," Journal of Economic Theory, Elsevier, vol. 5(2), pages 267-277, October.
    10. John Geanakoplos, 2005. "Three brief proofs of Arrow’s Impossibility Theorem," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(1), pages 211-215, July.
    11. Eraslan, H.Hulya & McLennan, Andrew, 2004. "Strategic candidacy for multivalued voting procedures," Journal of Economic Theory, Elsevier, vol. 117(1), pages 29-54, July.
    12. Ning Yu, 2012. "A one-shot proof of Arrow’s impossibility theorem," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(2), pages 523-525, June.
    13. Reny, Philip J., 2001. "Arrow's theorem and the Gibbard-Satterthwaite theorem: a unified approach," Economics Letters, Elsevier, vol. 70(1), pages 99-105, January.
    14. Sen, Arunava, 2001. "Another direct proof of the Gibbard-Satterthwaite Theorem," Economics Letters, Elsevier, vol. 70(3), pages 381-385, March.
    15. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    16. Barbera, S. & Peleg, B., 1988. "Strategy-Proof Voting Schemes With Continuous Preferences," UFAE and IAE Working Papers 91.88, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muto, Nozomu & Sato, Shin, 2016. "Bounded response of aggregated preferences," Journal of Mathematical Economics, Elsevier, vol. 65(C), pages 1-15.
    2. Paul Frijters & Benno Torgler & Brendan Markey-Towler, 2016. "On the Problem of Constructing Rational Preferences," The Economic Record, The Economic Society of Australia, vol. 92, pages 68-82, June.
    3. Matías Núñez, 2014. "The strategic sincerity of Approval voting," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(1), pages 157-189, May.
    4. Priscilla Man & Shino Takayama, 2013. "A Unifying Impossibility Theorem for Compact Metricsocial Alternatives Space," Discussion Papers Series 477, School of Economics, University of Queensland, Australia.
    5. Uuganbaatar Ninjbat, 2015. "Impossibility theorems are modified and unified," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 849-866, December.
    6. Ning Yu, 2015. "A quest for fundamental theorems of social choice," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(3), pages 533-548, March.
    7. repec:eee:mateco:v:71:y:2017:i:c:p:28-35 is not listed on IDEAS
    8. Brendan Markey-Towler, 2016. "Economics cannot isolate itself from political theory: a mathematical demonstration," Papers 1701.06410, arXiv.org.
    9. Nanyang Bu, 2016. "Joint misrepresentation with bribes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(1), pages 115-125, January.
    10. Shino Takayama & Akira Yokotani, 2014. "Serial Dictatorship with Infinitely Many Agents," Discussion Papers Series 503, School of Economics, University of Queensland, Australia.

    More about this item

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qld:uq2004:448. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (SOE IT). General contact details of provider: http://edirc.repec.org/data/decuqau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.