IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Theorem on Preference Aggregation

I present a general theorem on preference aggregation. This theorem implies, as corollaries, Arrow's Impossibility Theorem, Wilson's extension of Arrow's to non-Paretian aggregation rules, the Gibbard-Satterthwaite Theorem and Sen's result on the Impossibility of a Paretian Liberal. The theorem shows that these classical results are not only similar, but actually share a common root. The theorem expresses a simple but deep fact that transcends each of its particular applications: it expresses the tension between decentralizing the choice of aggregate into partial choices based on preferences over pairs of alternatives, and the need for some coordination in these decisions, so as to avoid contradictory recommendations.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://pareto.uab.es/wp/2003/60103.pdf
Download Restriction: no

Paper provided by Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC) in its series UFAE and IAE Working Papers with number 601.03.

as
in new window

Length: 18
Date of creation: 01 Jul 2003
Date of revision:
Handle: RePEc:aub:autbar:601.03
Contact details of provider: Postal: 08193, Bellaterra, Barcelona
Phone: 34 93 592 1203
Fax: +34 93 542-1223
Web page: http://pareto.uab.cat
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Barbera, S. & Peleg, B., 1988. "Strategy-Proof Voting Schemes With Continuous Preferences," UFAE and IAE Working Papers 91.88, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  2. Barbera, Salvador, 1983. "Strategy-Proofness and Pivotal Voters: A Direct Proof of the Gibbard-Satterthwaite Theorem," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(2), pages 413-17, June.
  3. Sen, Amartya Kumar, 1970. "The Impossibility of a Paretian Liberal," Scholarly Articles 3612779, Harvard University Department of Economics.
  4. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
  5. Barbera Salvador & Gul Faruk & Stacchetti Ennio, 1993. "Generalized Median Voter Schemes and Committees," Journal of Economic Theory, Elsevier, vol. 61(2), pages 262-289, December.
  6. Eliaz, K., 2001. "Arrow`s Theorem and the Gibbard-Satterthwaite Theorem as Special Cases of a Single Theorem," Papers 2001-11, Tel Aviv.
  7. Sen, Arunava, 2001. "Another direct proof of the Gibbard-Satterthwaite Theorem," Economics Letters, Elsevier, vol. 70(3), pages 381-385, March.
  8. Batteau, Pierre & Blin, Jean-Marie & Monjardet, Bernard, 1981. "Stability of Aggregation Procedures, Ultrafilters, and Simple Games," Econometrica, Econometric Society, vol. 49(2), pages 527-34, March.
  9. Wilson, Robert, 1972. "Social choice theory without the Pareto Principle," Journal of Economic Theory, Elsevier, vol. 5(3), pages 478-486, December.
  10. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
  11. Reny, Philip J., 2001. "Arrow's theorem and the Gibbard-Satterthwaite theorem: a unified approach," Economics Letters, Elsevier, vol. 70(1), pages 99-105, January.
  12. Maurice Salles, 2000. "Amartya Sen. Droits et choix social," Revue Économique, Programme National Persée, vol. 51(3), pages 445-457.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aub:autbar:601.03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Xavier Vila)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.