IDEAS home Printed from https://ideas.repec.org/p/hhs/lunewp/2005_003.html
   My bibliography  Save this paper

Strategy-Proof Allocation of Multiple Public Goods

Author

Listed:
  • Svensson, Lars-Gunnar

    () (Department of Economics, Lund University)

  • Torstensson, Pär

    (Department of Economics, Lund University)

Abstract

We characterize the set of strategy-proof social choice functions (SCFs), the outcome of which are multiple public goods. The set of feasible alternatives is a subset of a product set with a finite number of elements. We do not require the SCFs to be ‘onto’, but instead impose the weaker requirement that every element in each category of public goods is attained at some preference profile. Admissible preferences are arbitrary rankings of the goods in the various categories, while a separability restriction concerning preferences among the various categories is assumed. We find that the range of the SCF is uniquely decomposed into a product set in general coarser than the original product set, and that the SCF must be dictatorial in each component of the range. If the range cannot be decomposed at all, the SCF is dictatorial in spite of the separability assumption on preferences, and a form of the Gibbard-Satterthwaite theorem with a restricted preference domain is obtained.

Suggested Citation

  • Svensson, Lars-Gunnar & Torstensson, Pär, 2005. "Strategy-Proof Allocation of Multiple Public Goods," Working Papers 2005:3, Lund University, Department of Economics, revised 02 Feb 2007.
  • Handle: RePEc:hhs:lunewp:2005_003 Note: The paper is forthcoming in "Social Choice and Welfare".
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Barbera, S. & Masso, J. & Serizawa, S., 1998. "Strategy-Proof Voting on Compact Ranges," Games and Economic Behavior, Elsevier, vol. 25(2), pages 272-291, November.
    2. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    3. G. Chichilnisky & G. M. Heal, 1997. "The geometry of implementation: a necessary and sufficient condition for straightforward games (*)," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 14(2), pages 259-294.
    4. Barbera, Salvador & Sonnenschein, Hugo & Zhou, Lin, 1991. "Voting by Committees," Econometrica, Econometric Society, vol. 59(3), pages 595-609, May.
    5. Sen, Amartya Kumar, 1970. "The Impossibility of a Paretian Liberal," Scholarly Articles 3612779, Harvard University Department of Economics.
    6. Sen, Amartya, 1970. "The Impossibility of a Paretian Liberal," Journal of Political Economy, University of Chicago Press, vol. 78(1), pages 152-157, Jan.-Feb..
    7. Yves Sprumont, 1995. "Strategyproof Collective Choice in Economic and Political Environments," Canadian Journal of Economics, Canadian Economics Association, vol. 28(1), pages 68-107, February.
    8. Barbera, Salvador & Masso, Jordi & Neme, Alejandro, 1997. "Voting under Constraints," Journal of Economic Theory, Elsevier, vol. 76(2), pages 298-321, October.
    9. Le Breton, Michel & Weymark, John A., 1999. "Strategy-proof social choice with continuous separable preferences," Journal of Mathematical Economics, Elsevier, vol. 32(1), pages 47-85, August.
    10. Navin Aswal & Shurojit Chatterji & Arunava Sen, 2003. "Dictatorial domains," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 22(1), pages 45-62, August.
    11. Barbera Salvador & Gul Faruk & Stacchetti Ennio, 1993. "Generalized Median Voter Schemes and Committees," Journal of Economic Theory, Elsevier, vol. 61(2), pages 262-289, December.
    12. Le Breton, M. & Sen, A., 1995. "Strategyproofness and decomposability : Weak Orderings," G.R.E.Q.A.M. 95a38, Universite Aix-Marseille III.
    13. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    14. Barbera, S. & Peleg, B., 1988. "Strategy-Proof Voting Schemes With Continuous Preferences," UFAE and IAE Working Papers 91.88, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavo Bergantiños & Leticia Lorenzo & Silvia Lorenzo-Freire, 2011. "New characterizations of the constrained equal awards rule in multi-issue allocation situations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 311-325, December.
    2. Mishra, Debasis & Roy, Souvik, 2012. "Strategy-proof partitioning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 285-300.
    3. Shurojit Chatterji & Arunava Sen, 2011. "Tops-only domains," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 46(2), pages 255-282, February.
    4. repec:spr:compst:v:74:y:2011:i:3:p:311-325 is not listed on IDEAS
    5. Chatterji, Shurojit & Roy, Souvik & Sen, Arunava, 2012. "The structure of strategy-proof random social choice functions over product domains and lexicographically separable preferences," Journal of Mathematical Economics, Elsevier, vol. 48(6), pages 353-366.
    6. Salvador Barberà, 2010. "Strategy-proof social choice," UFAE and IAE Working Papers 828.10, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    7. Alexander Reffgen, 2011. "Generalizing the Gibbard–Satterthwaite theorem: partial preferences, the degree of manipulation, and multi-valuedness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 37(1), pages 39-59, June.
    8. Reffgen, Alexander & Svensson, Lars-Gunnar, 2012. "Strategy-proof voting for multiple public goods," Theoretical Economics, Econometric Society, vol. 7(3), September.

    More about this item

    Keywords

    Strategy-proof; multiple public goods; decomposability; weakly onto; component-wise dictatorial.;

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • D78 - Microeconomics - - Analysis of Collective Decision-Making - - - Positive Analysis of Policy Formulation and Implementation
    • H41 - Public Economics - - Publicly Provided Goods - - - Public Goods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:lunewp:2005_003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Edgerton). General contact details of provider: http://edirc.repec.org/data/delunse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.