IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v86y2014icp212-236.html
   My bibliography  Save this article

Random dictatorship domains

Author

Listed:
  • Chatterji, Shurojit
  • Sen, Arunava
  • Zeng, Huaxia

Abstract

A domain of preference orderings is a random dictatorship domain if every strategy-proof random social choice function satisfying unanimity defined on the domain is a random dictatorship. Gibbard (1977) showed that the universal domain is a random dictatorship domain. We ask whether an arbitrary dictatorial domain is a random dictatorship domain and show that the answer is negative by constructing dictatorial domains that admit anonymous, unanimous, strategy-proof random social choice functions which are not random dictatorships. Our result applies to the constrained voting model. Lastly, we show that substantial strengthenings of linked domains (a class of dictatorial domains introduced in Aswal et al., 2003) are needed to restore random dictatorship and such strengthenings are “almost necessary”.

Suggested Citation

  • Chatterji, Shurojit & Sen, Arunava & Zeng, Huaxia, 2014. "Random dictatorship domains," Games and Economic Behavior, Elsevier, vol. 86(C), pages 212-236.
  • Handle: RePEc:eee:gamebe:v:86:y:2014:i:c:p:212-236
    DOI: 10.1016/j.geb.2014.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825614000700
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Le Breton & Arunava Sen, 1999. "Separable Preferences, Strategyproofness, and Decomposability," Econometrica, Econometric Society, vol. 67(3), pages 605-628, May.
    2. Duggan, John, 1996. "A Geometric Proof of Gibbard's Random Dictatorship Theorem," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 365-369, February.
    3. Barbera, Salvador & Masso, Jordi & Neme, Alejandro, 2005. "Voting by committees under constraints," Journal of Economic Theory, Elsevier, vol. 122(2), pages 185-205, June.
    4. Serizawa Shigehiro, 1995. "Power of Voters and Domain of Preferences Where Voting by Committees Is Strategy-Proof," Journal of Economic Theory, Elsevier, vol. 67(2), pages 599-608, December.
    5. Barbera, Salvador & Sonnenschein, Hugo & Zhou, Lin, 1991. "Voting by Committees," Econometrica, Econometric Society, vol. 59(3), pages 595-609, May.
    6. Chatterji, Shurojit & Sanver, Remzi & Sen, Arunava, 2013. "On domains that admit well-behaved strategy-proof social choice functions," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1050-1073.
    7. Barbera, Salvador & Sonnenschein, Hugo & Zhou, Lin, 1991. "Voting by Committees," Econometrica, Econometric Society, vol. 59(3), pages 595-609, May.
    8. Chatterji, Shurojit & Roy, Souvik & Sen, Arunava, 2012. "The structure of strategy-proof random social choice functions over product domains and lexicographically separable preferences," Journal of Mathematical Economics, Elsevier, vol. 48(6), pages 353-366.
    9. Kim, K. H. & Roush, Fred W., 1989. "Kelly's conjecture," Mathematical Social Sciences, Elsevier, vol. 17(2), pages 189-194, April.
    10. Barbera, Salvador & Masso, Jordi & Neme, Alejandro, 1997. "Voting under Constraints," Journal of Economic Theory, Elsevier, vol. 76(2), pages 298-321, October.
    11. Shin Sato, 2010. "Circular domains," Review of Economic Design, Springer;Society for Economic Design, vol. 14(3), pages 331-342, September.
    12. Ehlers, Lars & Peters, Hans & Storcken, Ton, 2002. "Strategy-Proof Probabilistic Decision Schemes for One-Dimensional Single-Peaked Preferences," Journal of Economic Theory, Elsevier, vol. 105(2), pages 408-434, August.
    13. Shurojit Chatterji & Arunava Sen, 2011. "Tops-only domains," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 46(2), pages 255-282, February.
    14. Gibbard, Allan, 1977. "Manipulation of Schemes That Mix Voting with Chance," Econometrica, Econometric Society, vol. 45(3), pages 665-681, April.
    15. Navin Aswal & Shurojit Chatterji & Arunava Sen, 2003. "Dictatorial domains," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 22(1), pages 45-62, August.
    16. Barbera Salvador & Gul Faruk & Stacchetti Ennio, 1993. "Generalized Median Voter Schemes and Committees," Journal of Economic Theory, Elsevier, vol. 61(2), pages 262-289, December.
    17. Sen, Arunava, 2001. "Another direct proof of the Gibbard-Satterthwaite Theorem," Economics Letters, Elsevier, vol. 70(3), pages 381-385, March.
    18. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    19. Peters, Hans & Roy, Souvik & Sen, Arunava & Storcken, Ton, 2014. "Probabilistic strategy-proof rules over single-peaked domains," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 123-127.
    20. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    21. Kalai, Ehud & Muller, Eitan, 1977. "Characterization of domains admitting nondictatorial social welfare functions and nonmanipulable voting procedures," Journal of Economic Theory, Elsevier, vol. 16(2), pages 457-469, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peters, Hans & Roy, Souvik & Sadhukhan, Soumyarup & Storcken, Ton, 2017. "An extreme point characterization of strategy-proof and unanimous probabilistic rules over binary restricted domains," Journal of Mathematical Economics, Elsevier, vol. 69(C), pages 84-90.
    2. repec:eee:matsoc:v:90:y:2017:i:c:p:28-34 is not listed on IDEAS
    3. Pycia, Marek & Ünver, M. Utku, 2015. "Decomposing random mechanisms," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 21-33.
    4. Chatterji, Shurojit & Sen, Arunava & Zeng, Huaxia, 2016. "A characterization of single-peaked preferences via random social choice functions," Theoretical Economics, Econometric Society, vol. 11(2), May.
    5. repec:spr:sochwe:v:48:y:2017:i:3:d:10.1007_s00355-017-1031-2 is not listed on IDEAS
    6. Achuthankutty, Gopakumar & Roy, Souvik, 2017. "On Single-peaked Domains and Min-max Rules," MPRA Paper 81375, University Library of Munich, Germany.

    More about this item

    Keywords

    Strategy-proofness; Random social choice functions; Random dictatorship;

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:86:y:2014:i:c:p:212-236. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.