IDEAS home Printed from https://ideas.repec.org/p/unm/umagsb/2013040.html
   My bibliography  Save this paper

Probabilistic strategy-proof rules over single-peaked domains

Author

Listed:
  • Peters, H.J.M.

    (Quantitative Economics)

  • Roy, S.

    (Quantitative Economics)

  • Sen, A.

    (Externe publicaties SBE)

  • Storcken, A.J.A.

    (Quantitative Economics)

Abstract

It is proved that every strategy-proof, peaks-only or unanimous, probabilistic rule defined over a minimally rich domain of single-peaked preferences is a probability mixture of strategy-proof, peaks-only or unanimous, deterministic rules over the same domain. The proof employs Farkas' Lemma and the max-flow min-cut theorem for capacitated networks.

Suggested Citation

  • Peters, H.J.M. & Roy, S. & Sen, A. & Storcken, A.J.A., 2013. "Probabilistic strategy-proof rules over single-peaked domains," Research Memorandum 040, Maastricht University, Graduate School of Business and Economics (GSBE).
  • Handle: RePEc:unm:umagsb:2013040
    DOI: 10.26481/umagsb.2013040
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/ws/files/705721/guid-31777bb9-e48b-482a-a6ab-6e8b99c31fd5-ASSET1.0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26481/umagsb.2013040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. John Weymark, 2011. "A unified approach to strategy-proofness for single-peaked preferences," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 2(4), pages 529-550, December.
    2. Duggan, John, 1996. "A Geometric Proof of Gibbard's Random Dictatorship Theorem," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 365-369, February.
    3. Chatterji, Shurojit & Sen, Arunava & Zeng, Huaxia, 2014. "Random dictatorship domains," Games and Economic Behavior, Elsevier, vol. 86(C), pages 212-236.
    4. Chatterji, Shurojit & Roy, Souvik & Sen, Arunava, 2012. "The structure of strategy-proof random social choice functions over product domains and lexicographically separable preferences," Journal of Mathematical Economics, Elsevier, vol. 48(6), pages 353-366.
    5. Kim C. Border & J. S. Jordan, 1983. "Straightforward Elections, Unanimity and Phantom Voters," Review of Economic Studies, Oxford University Press, vol. 50(1), pages 153-170.
    6. H. Moulin, 1980. "On strategy-proofness and single peakedness," Public Choice, Springer, vol. 35(4), pages 437-455, January.
    7. Picot, Jérémy & Sen, Arunava, 2012. "An extreme point characterization of random strategy-proof social choice functions: The two alternative case," Economics Letters, Elsevier, vol. 115(1), pages 49-52.
    8. Ehlers, Lars & Peters, Hans & Storcken, Ton, 2002. "Strategy-Proof Probabilistic Decision Schemes for One-Dimensional Single-Peaked Preferences," Journal of Economic Theory, Elsevier, vol. 105(2), pages 408-434, August.
    9. Pycia, Marek & Ünver, M. Utku, 2015. "Decomposing random mechanisms," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 21-33.
    10. Gibbard, Allan, 1977. "Manipulation of Schemes That Mix Voting with Chance," Econometrica, Econometric Society, vol. 45(3), pages 665-681, April.
    11. Barbera Salvador & Gul Faruk & Stacchetti Ennio, 1993. "Generalized Median Voter Schemes and Committees," Journal of Economic Theory, Elsevier, vol. 61(2), pages 262-289, December.
    12. Arunava Sen, 2011. "The Gibbard random dictatorship theorem: a generalization and a new proof," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 2(4), pages 515-527, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chatterji, Shurojit & Zeng, Huaxia, 2018. "On random social choice functions with the tops-only property," Games and Economic Behavior, Elsevier, vol. 109(C), pages 413-435.
    2. Stefano Vannucci, 2017. "Tree-Wise Single Peaked Domains," Department of Economics University of Siena 770, Department of Economics, University of Siena.
    3. Chatterji, Shurojit & Sen, Arunava & Zeng, Huaxia, 2016. "A characterization of single-peaked preferences via random social choice functions," Theoretical Economics, Econometric Society, vol. 11(2), May.
    4. Aytek Erdil, 2013. "Strategy-Proof Stochastic Assignment," Cambridge Working Papers in Economics 1333, Faculty of Economics, University of Cambridge.
    5. Erdil, Aytek, 2014. "Strategy-proof stochastic assignment," Journal of Economic Theory, Elsevier, vol. 151(C), pages 146-162.
    6. Ehlers, Lars & Majumdar, Dipjyoti & Mishra, Debasis & Sen, Arunava, 2020. "Continuity and incentive compatibility in cardinal mechanisms," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 31-41.
    7. Alex Gershkov & Benny Moldovanu & Xianwen Shi, 2017. "Optimal Voting Rules," Review of Economic Studies, Oxford University Press, vol. 84(2), pages 688-717.
    8. Pycia, Marek & Ünver, M. Utku, 2015. "Decomposing random mechanisms," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 21-33.
    9. Peters, Hans & Roy, Souvik & Sadhukhan, Soumyarup, 2018. "Random social choice functions for single-peaked domains on trees," Research Memorandum 004, Maastricht University, Graduate School of Business and Economics (GSBE).
    10. Roy, Souvik & Sadhukhan, Soumyarup, 2021. "A unified characterization of the randomized strategy-proof rules," Journal of Economic Theory, Elsevier, vol. 197(C).
    11. Chatterji, Shurojit & Sen, Arunava & Zeng, Huaxia, 2014. "Random dictatorship domains," Games and Economic Behavior, Elsevier, vol. 86(C), pages 212-236.
    12. Souvik Roy & Soumyarup Sadhukhan, 2019. "A characterization of random min–max domains and its applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 887-906, November.
    13. Karmokar, Madhuparna & Roy, Souvik, 2020. "The structure of (local) ordinal Bayesian incentive compatible random rules," MPRA Paper 103494, University Library of Munich, Germany.
    14. Lars EHLERS & Dipjyoti MAJUMDAR & Debasis MISHRA & Arunava SEN, 2016. "Continuity and Incentive Compatibility in Cardinal Voting Mechanisms," Cahiers de recherche 04-2016, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    15. Gopakumar Achuthankutty & Souvik Roy, 2018. "On single-peaked domains and min–max rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(4), pages 753-772, December.
    16. Roy, Souvik & Sadhukhan, Soumyarup, 2022. "On the equivalence of strategy-proofness and upper contour strategy-proofness for randomized social choice functions," Journal of Mathematical Economics, Elsevier, vol. 99(C).
    17. Peters, Hans & Roy, Souvik & Sadhukhan, Soumyarup & Storcken, Ton, 2017. "An extreme point characterization of strategy-proof and unanimous probabilistic rules over binary restricted domains," Journal of Mathematical Economics, Elsevier, vol. 69(C), pages 84-90.
    18. Gogulapati Sreedurga & Soumyarup Sadhukhan & Souvik Roy & Yadati Narahari, 2022. "Characterization of Group-Fair Social Choice Rules under Single-Peaked Preferences," Papers 2207.07984, arXiv.org.
    19. Gaurav, Abhishek & Picot, Jérémy & Sen, Arunava, 2017. "The decomposition of strategy-proof random social choice functions on dichotomous domains," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 28-34.
    20. Núñez, Matías, 2015. "Threshold voting leads to Type-Revelation," Economics Letters, Elsevier, vol. 136(C), pages 211-213.
    21. Chatterji, Shurojit & Zeng, Huaxia, 2019. "Random mechanism design on multidimensional domains," Journal of Economic Theory, Elsevier, vol. 182(C), pages 25-105.
    22. EHLERS, Lars & MAJUMDAR, Dipjyoti & MISHRA, Debasis & SEN, Arunava, 2016. "Continuity and incentive compatibility," Cahiers de recherche 2016-04, Universite de Montreal, Departement de sciences economiques.
    23. Haris Aziz & Alexander Lam & Mashbat Suzuki & Toby Walsh, 2022. "Random Rank: The One and Only Strategyproof and Proportionally Fair Randomized Facility Location Mechanism," Papers 2205.14798, arXiv.org, revised Jun 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chatterji, Shurojit & Zeng, Huaxia, 2018. "On random social choice functions with the tops-only property," Games and Economic Behavior, Elsevier, vol. 109(C), pages 413-435.
    2. Chatterji, Shurojit & Sen, Arunava & Zeng, Huaxia, 2016. "A characterization of single-peaked preferences via random social choice functions," Theoretical Economics, Econometric Society, vol. 11(2), May.
    3. Chatterji, Shurojit & Zeng, Huaxia, 2019. "Random mechanism design on multidimensional domains," Journal of Economic Theory, Elsevier, vol. 182(C), pages 25-105.
    4. Roy, Souvik & Sadhukhan, Soumyarup, 2021. "A unified characterization of the randomized strategy-proof rules," Journal of Economic Theory, Elsevier, vol. 197(C).
    5. Souvik Roy & Soumyarup Sadhukhan, 2019. "A characterization of random min–max domains and its applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 887-906, November.
    6. Pycia, Marek & Ünver, M. Utku, 2015. "Decomposing random mechanisms," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 21-33.
    7. Peters, Hans & Roy, Souvik & Sadhukhan, Soumyarup & Storcken, Ton, 2017. "An extreme point characterization of strategy-proof and unanimous probabilistic rules over binary restricted domains," Journal of Mathematical Economics, Elsevier, vol. 69(C), pages 84-90.
    8. Chatterji, Shurojit & Roy, Souvik & Sadhukhan, Soumyarup & Sen, Arunava & Zeng, Huaxia, 2022. "Probabilistic fixed ballot rules and hybrid domains," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    9. Peters, Hans & Roy, Souvik & Sadhukhan, Soumyarup, 2018. "Random social choice functions for single-peaked domains on trees," Research Memorandum 004, Maastricht University, Graduate School of Business and Economics (GSBE).
    10. Chatterji, Shurojit & Sen, Arunava & Zeng, Huaxia, 2014. "Random dictatorship domains," Games and Economic Behavior, Elsevier, vol. 86(C), pages 212-236.
    11. Felix Brandt & Patrick Lederer & Ren'e Romen, 2022. "Relaxed Notions of Condorcet-Consistency and Efficiency for Strategyproof Social Decision Schemes," Papers 2201.10418, arXiv.org.
    12. Gaurav, Abhishek & Picot, Jérémy & Sen, Arunava, 2017. "The decomposition of strategy-proof random social choice functions on dichotomous domains," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 28-34.
    13. Gogulapati Sreedurga & Soumyarup Sadhukhan & Souvik Roy & Yadati Narahari, 2022. "Characterization of Group-Fair Social Choice Rules under Single-Peaked Preferences," Papers 2207.07984, arXiv.org.
    14. Bonifacio, Agustín G. & Massó, Jordi, 2020. "On strategy-proofness and semilattice single-peakedness," Games and Economic Behavior, Elsevier, vol. 124(C), pages 219-238.
    15. Aziz, Haris & Chan, Hau & Lee, Barton E. & Parkes, David C., 2020. "The capacity constrained facility location problem," Games and Economic Behavior, Elsevier, vol. 124(C), pages 478-490.
    16. Barbera, S. & Masso, J. & Serizawa, S., 1998. "Strategy-Proof Voting on Compact Ranges," Games and Economic Behavior, Elsevier, vol. 25(2), pages 272-291, November.
    17. John A. Weymark, 2008. "Strategy‐Proofness and the Tops‐Only Property," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 10(1), pages 7-26, February.
    18. ,, 2009. "Strategy-proofness and single-crossing," Theoretical Economics, Econometric Society, vol. 4(2), June.
    19. Protopapas, Panos, 2018. "On strategy-proofness and single-peakedness: median-voting over intervals," MPRA Paper 83939, University Library of Munich, Germany.
    20. Achuthankutty, Gopakumar & Roy, Souvik, 2017. "On Top-connected Single-peaked and Partially Single-peaked Domains," MPRA Paper 78102, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umagsb:2013040. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/meteonl.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Willems or Leonne Portz (email available below). General contact details of provider: https://edirc.repec.org/data/meteonl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.