IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v115y2012i1p49-52.html
   My bibliography  Save this article

An extreme point characterization of random strategy-proof social choice functions: The two alternative case

Author

Listed:
  • Picot, Jérémy
  • Sen, Arunava

Abstract

We show that every strategy-proof random social choice function is a convex combination of strategy-proof deterministic social choice functions in a two-alternative voting model. This completely characterizes all strategy-proof random social choice functions in this setting.

Suggested Citation

  • Picot, Jérémy & Sen, Arunava, 2012. "An extreme point characterization of random strategy-proof social choice functions: The two alternative case," Economics Letters, Elsevier, vol. 115(1), pages 49-52.
  • Handle: RePEc:eee:ecolet:v:115:y:2012:i:1:p:49-52
    DOI: 10.1016/j.econlet.2011.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176511004599
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbera, Salvador & Sonnenschein, Hugo & Zhou, Lin, 1991. "Voting by Committees," Econometrica, Econometric Society, vol. 59(3), pages 595-609, May.
    2. Barbera, Salvador & Sonnenschein, Hugo & Zhou, Lin, 1991. "Voting by Committees," Econometrica, Econometric Society, vol. 59(3), pages 595-609, May.
    3. Bhaskar Dutta & Hans Peters & Arunava Sen, 2008. "Strategy-proof cardinal decision schemes," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(4), pages 701-702, May.
    4. Satterthwaite, Mark Allen, 1975. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions," Journal of Economic Theory, Elsevier, vol. 10(2), pages 187-217, April.
    5. Bogomolnaia, Anna & Moulin, Herve & Stong, Richard, 2005. "Collective choice under dichotomous preferences," Journal of Economic Theory, Elsevier, vol. 122(2), pages 165-184, June.
    6. Gibbard, Allan, 1973. "Manipulation of Voting Schemes: A General Result," Econometrica, Econometric Society, vol. 41(4), pages 587-601, July.
    7. Arunava Sen, 2011. "The Gibbard random dictatorship theorem: a generalization and a new proof," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 2(4), pages 515-527, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peters, Hans & Roy, Souvik & Sadhukhan, Soumyarup & Storcken, Ton, 2017. "An extreme point characterization of strategy-proof and unanimous probabilistic rules over binary restricted domains," Journal of Mathematical Economics, Elsevier, vol. 69(C), pages 84-90.
    2. Peters, Hans & Roy, Souvik & Sen, Arunava & Storcken, Ton, 2014. "Probabilistic strategy-proof rules over single-peaked domains," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 123-127.
    3. repec:eee:matsoc:v:90:y:2017:i:c:p:28-34 is not listed on IDEAS
    4. Pycia, Marek & Ünver, M. Utku, 2015. "Decomposing random mechanisms," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 21-33.

    More about this item

    Keywords

    Strategy-proofness; Random social choice functions; Extreme point characterization;

    JEL classification:

    • D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:115:y:2012:i:1:p:49-52. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.