IDEAS home Printed from https://ideas.repec.org/p/ptu/wpaper/w202111.html
   My bibliography  Save this paper

Scrapping, Renewable Technology Adoption, and Growth

Author

Listed:
  • Bernardino Adão
  • Borghan Narajabad

Abstract

We develop a dynamic general equilibrium integrated assessment model that incorporates scrapping costs due to new technology adoption in renewable energy as well as externalities associated with carbon emissions and renewable technology spillovers. We use world economy data to calibrate our model and investigate the effects of the scrapping channel on renewable energy adoption and on the optimal energy transition. Our calibrated model implies several interesting connections between scrapping costs, the two externalities, policy, and welfare. We investigate the relative effectiveness of two policy instruments-Pigouvian carbon taxes and policies that internalize spillover effects-in isolation as well as in tandem. Our findings suggest that scrapping costs are of quantitative importance for technology adoption and the energy transition. The two policy instruments are better thought of as complements rather than substitutes.

Suggested Citation

  • Bernardino Adão & Borghan Narajabad, 2021. "Scrapping, Renewable Technology Adoption, and Growth," Working Papers w202111, Banco de Portugal, Economics and Research Department.
  • Handle: RePEc:ptu:wpaper:w202111
    as

    Download full text from publisher

    File URL: https://www.bportugal.pt/sites/default/files/anexos/papers/wp202111.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    2. Arthur van Benthem & Kenneth Gillingham & James Sweeney, 2008. "Learning-by-Doing and the Optimal Solar Policy in California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 131-152.
    3. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    4. Peter Hartley & Kenneth B. Medlock III & Ted Temzelides & Xinya Zhang, 2016. "Energy Sector Innovation and Growth: An Optimal Energy Crisis," The Energy Journal, , vol. 37(1), pages 233-258, January.
    5. Gautam Gowrisankaran & Marc Rysman, 2012. "Dynamics of Consumer Demand for New Durable Goods," Journal of Political Economy, University of Chicago Press, vol. 120(6), pages 1173-1219.
    6. Raouf Boucekkine & David de la Croix & Omar Licandro, 2006. "Vintage Capital," Economics Working Papers ECO2006/8, European University Institute.
    7. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    8. Stephie Fried, 2018. "Climate Policy and Innovation: A Quantitative Macroeconomic Analysis," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 90-118, January.
    9. Benhabib, Jess & Rustichini, Aldo, 1991. "Vintage capital, investment, and growth," Journal of Economic Theory, Elsevier, vol. 55(2), pages 323-339, December.
    10. Schmidt-Ehmcke, Jens & Zloczysti, Petra & Braun, Frauke G, 2010. "Innovative Activity in Wind and Solar Technology: Empirical Evidence on Knowledge Spillovers Using Patent Data," CEPR Discussion Papers 7865, C.E.P.R. Discussion Papers.
    11. Robert M. Solow & Frederic Y. Wan, 1976. "Extraction Costs in the Theory of Exhaustible Resources," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 359-370, Autumn.
    12. Greenwood, Jeremy & Hercowitz, Zvi & Krusell, Per, 1997. "Long-Run Implications of Investment-Specific Technological Change," American Economic Review, American Economic Association, vol. 87(3), pages 342-362, June.
    13. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    14. Rodolfo E. Manuelli & Ananth Seshadri, 2014. "Frictionless Technology Diffusion: The Case of Tractors," American Economic Review, American Economic Association, vol. 104(4), pages 1368-1391, April.
    15. Andrew Atkeson & Ariel Burstein, 2019. "Aggregate Implications of Innovation Policy," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2625-2683.
    16. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    17. Chakravorty, Ujjayant & Roumasset, James & Tse, Kinping, 1997. "Endogenous Substitution among Energy Resources and Global Warming," Journal of Political Economy, University of Chicago Press, vol. 105(6), pages 1201-1234, December.
    18. Tor Jakob Klette & Samuel Kortum, 2004. "Innovating Firms and Aggregate Innovation," Journal of Political Economy, University of Chicago Press, vol. 112(5), pages 986-1018, October.
    19. Parente Stephen L., 1994. "Technology Adoption, Learning-by-Doing, and Economic Growth," Journal of Economic Theory, Elsevier, vol. 63(2), pages 346-369, August.
    20. Xin Li & Borghan Narajabad & Ted Temzelides, 2016. "Robust dynamic energy use and climate change," Quantitative Economics, Econometric Society, vol. 7(3), pages 821-857, November.
    21. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    22. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, January.
    23. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626, National Bureau of Economic Research, Inc.
    24. Grubler, Arnulf & Messner, Sabine, 1998. "Technological change and the timing of mitigation measures," Energy Economics, Elsevier, vol. 20(5-6), pages 495-512, December.
    25. Jovanovic, Boyan & Yatsenko, Yuri, 2012. "Investment in vintage capital," Journal of Economic Theory, Elsevier, vol. 147(2), pages 551-569.
    26. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    27. Stokey, Nancy L, 1998. "Are There Limits to Growth?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(1), pages 1-31, February.
    28. Chari, V V & Hopenhayn, Hugo, 1991. "Vintage Human Capital, Growth, and the Diffusion of New Technology," Journal of Political Economy, University of Chicago Press, vol. 99(6), pages 1142-1165, December.
    29. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernardino Adão & Borghan N. Narajabad & Ted Temzelides, 2022. "Renewable Technology Adoption Costs and Economic Growth," Finance and Economics Discussion Series 2022-045, Board of Governors of the Federal Reserve System (U.S.).
    2. Adão, Bernardino & Narajabad, Borghan & Temzelides, Ted, 2024. "Renewable technology adoption costs and economic growth," Energy Economics, Elsevier, vol. 129(C).
    3. Ted Temzelides & Borghan Narajabad & Bernardino Adao, 2016. "Renewable Technology Adoption and the Macroeconomy," 2016 Meeting Papers 6, Society for Economic Dynamics.
    4. Adao, Bernardino & Narajabad, Borghan & Temzelides, Ted, 2012. "Renewable Technology Adoption and the Macroeconomy," Working Papers 14-007, Rice University, Department of Economics.
    5. Peter Hartley & Kenneth B. Medlock III & Ted Temzelides & Xinya Zhang, 2016. "Energy Sector Innovation and Growth: An Optimal Energy Crisis," The Energy Journal, , vol. 37(1), pages 233-258, January.
    6. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    7. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    8. Acemoglu, Daron & Rafey, Will, 2023. "Mirage on the horizon: Geoengineering and carbon taxation without commitment," Journal of Public Economics, Elsevier, vol. 219(C).
    9. Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.
    10. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    11. Peter R. Hartley & Kenneth B. Medlock III, 2017. "The Valley of Death for New Energy Technologies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    12. Armon Rezai & Frederick Van Der Ploeg, 2017. "Abandoning Fossil Fuel: How Fast and How Much," Manchester School, University of Manchester, vol. 85(S2), pages 16-44, December.
    13. Xu, Qi & Liu, Kui, 2024. "Hero or Devil: A comparison of different carbon tax policies for China," Energy, Elsevier, vol. 306(C).
    14. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    15. Boyan Jovanovic, 1998. "Vintage Capital and Inequality," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(2), pages 497-530, April.
    16. repec:spo:wpmain:info:hdl:2441/14g286e42n8bl9is6h16b18kes is not listed on IDEAS
    17. Boucekkine, Raouf & Licandro, Omar & Puch, Luis A. & del Rio, Fernando, 2005. "Vintage capital and the dynamics of the AK model," Journal of Economic Theory, Elsevier, vol. 120(1), pages 39-72, January.
    18. José-Luis Cruz & Esteban Rossi-Hansberg, 2024. "The Economic Geography of Global Warming," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(2), pages 899-939.
    19. repec:cvs:starer:9816 is not listed on IDEAS
    20. Armon Rezai & Frederick Ploeg, 2017. "Second-Best Renewable Subsidies to De-carbonize the Economy: Commitment and the Green Paradox," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 409-434, March.
    21. Raouf Boucekkine & David De la Croix & Omar Licandro, 2011. "Vintage Capital Growth Theory: Three Breakthroughs," Working Papers 565, Barcelona School of Economics.
    22. Elizabeth Baldwin & Yongyang Cai & Karlygash Kuralbayeva, 2018. "To Build or Not to Build? Capital Stocks and Climate Policy," CESifo Working Paper Series 6884, CESifo.

    More about this item

    JEL classification:

    • H21 - Public Economics - - Taxation, Subsidies, and Revenue - - - Efficiency; Optimal Taxation
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ptu:wpaper:w202111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEE-NTD (email available below). General contact details of provider: https://edirc.repec.org/data/bdpgvpt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.