IDEAS home Printed from
   My bibliography  Save this paper

Structural Breaks, Price and Income Elasticity, and Forecast of the Monthly Italian Electricity Demand


  • Dicembrino, Claudio
  • Trovato, Giovanni


Insights about electricity demand dynamics is fundamental for investment capacity, optimal energy policies, and a balanced electricity system. This paper presents an empirical analysis of the monthly Italian electricity demand since January 2001 to June 2012. In the first section we conduct the analysis of structural breaks in the electricity demand finding that the series has two structural breaks in August 2002 and August 2004 as market liberalization effects on consumption. In the second part of the paper we estimate demand price elasticities both for residential and industrial sector. As expected from the electricity economics literature concerning elasticities estimates, we find that the long run price and income elasticities are more price elastic than the short run both in industrial and residential consumption. In the third and last section, we compare two different forecasting models: the Hidden Markov Models (HMM) and the Holt Winters (H-W) seasonal smoothing method. Considering the Mean Absolute Percentage Error (MAPE), the HMM approach seems to show a superiority in forecasting the monthly electricity demand compared to the H-W methodology.

Suggested Citation

  • Dicembrino, Claudio & Trovato, Giovanni, 2013. "Structural Breaks, Price and Income Elasticity, and Forecast of the Monthly Italian Electricity Demand," MPRA Paper 47653, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:47653

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Blazquez Leticia & Nina Boogen & Massimo Filippini, 2012. "Residential electricity demand for Spain: new empirical evidence using aggregated data," CEPE Working paper series 12-82, CEPE Center for Energy Policy and Economics, ETH Zurich.
    3. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    4. Considine, Timothy J., 2000. "The impacts of weather variations on energy demand and carbon emissions," Resource and Energy Economics, Elsevier, vol. 22(4), pages 295-314, October.
    5. Filippini, Massimo, 1995. "Swiss residential demand for electricity by time-of-use," Resource and Energy Economics, Elsevier, vol. 17(3), pages 281-290, November.
    6. Xavier Labandeira & José M. Labeaga & Miguel Rodríguez, 2006. "A Residential Energy Demand System for Spain," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 87-112.
    7. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    8. Henley, Andrew & Peirson, John, 1998. "Residential energy demand and the interaction of price and temperature: British experimental evidence," Energy Economics, Elsevier, vol. 20(2), pages 157-171, April.
    9. Goodwin, Paul & Lawton, Richard, 1999. "On the asymmetry of the symmetric MAPE," International Journal of Forecasting, Elsevier, vol. 15(4), pages 405-408, October.
    10. Garcia-Cerrutti, L. Miguel, 2000. "Estimating elasticities of residential energy demand from panel county data using dynamic random variables models with heteroskedastic and correlated error terms," Resource and Energy Economics, Elsevier, vol. 22(4), pages 355-366, October.
    11. Espey, James A. & Espey, Molly, 2004. "Turning on the Lights: A Meta-Analysis of Residential Electricity Demand Elasticities," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(01), April.
    12. Massimo Filippini, 1999. "Swiss residential demand for electricity," Applied Economics Letters, Taylor & Francis Journals, vol. 6(8), pages 533-538.
    13. Clemente, Jesus & Montanes, Antonio & Reyes, Marcelo, 1998. "Testing for a unit root in variables with a double change in the mean," Economics Letters, Elsevier, vol. 59(2), pages 175-182, May.
    14. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    15. Ahlburg, Dennis A., 1992. "Error measures and the choice of a forecast method," International Journal of Forecasting, Elsevier, vol. 8(1), pages 99-100, June.
    16. Johnsen, Tor Arnt, 2001. "Demand, generation and price in the Norwegian market for electric power," Energy Economics, Elsevier, vol. 23(3), pages 227-251, May.
    17. Henley, Andrew & Peirson, John, 1997. "Non-linearities in Electricity Demand and Temperature: Parametric versus Non-parametric Methods," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(1), pages 149-162, February.
    18. Sarah Gelper & Roland Fried & Christophe Croux, 2010. "Robust forecasting with exponential and Holt-Winters smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 285-300.
    19. Erdogdu, Erkan, 2007. "Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey," Energy Policy, Elsevier, vol. 35(2), pages 1129-1146, February.
    20. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    21. T. Cipra & R. Romera, 1997. "Kalman filter with outliers and missing observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(2), pages 379-395, December.
    22. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," Review of Economic Studies, Oxford University Press, vol. 72(3), pages 853-883.
    23. Fildes, Robert, 1992. "The evaluation of extrapolative forecasting methods," International Journal of Forecasting, Elsevier, vol. 8(1), pages 81-98, June.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Huang, Yongfu, 2014. "Drivers of rising global energy demand: The importance of spatial lag and error dependence," Energy, Elsevier, vol. 76(C), pages 254-263.
    2. Lindemann, Henrik, 2015. "Regulatory Objectives and the Intensity of Unbundling in Electricity Markets," Hannover Economic Papers (HEP) dp-544, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    3. Lindemann, Henrik, 2015. "Budgetary Interests and the Degree of Unbundling in Electricity Markets - An Empirical Analysis for OECD Countries," Hannover Economic Papers (HEP) dp-543, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.

    More about this item


    Electricity Demand; Price and Income Elasticity; Hidden Markov Models; Holt-Winters Seasonal Filter Smoothing;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • R21 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Housing Demand

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:47653. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.