IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/17273.html
   My bibliography  Save this paper

Forecasting economy with Bayesian autoregressive distributed lag model: choosing optimal prior in economic downturn

Author

Listed:
  • Bušs, Ginters

Abstract

Bayesian inference requires an analyst to set priors. Setting the right prior is crucial for precise forecasts. This paper analyzes how optimal prior changes when an economy is hit by a recession. For this task, an autoregressive distributed lag (ADL) model is chosen. The results show that a sharp economic slowdown changes the optimal prior in two directions. First, it changes the structure of the optimal weight prior, setting smaller weight on the lagged dependent variable compared to variables containing more recent information. Second, greater uncertainty brought by a rapid economic downturn requires more space for coefficient variation, which is set by the overall tightness parameter. It is shown that the optimal overall tightness parameter may increase to such an extent that Bayesian ADL becomes equivalent to frequentist ADL.

Suggested Citation

  • Bušs, Ginters, 2009. "Forecasting economy with Bayesian autoregressive distributed lag model: choosing optimal prior in economic downturn," MPRA Paper 17273, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:17273
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/17273/1/MPRA_paper_17273.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/17896/2/MPRA_paper_17896.pdf
    File Function: revised version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/18224/3/MPRA_paper_18224.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    2. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    3. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    2. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    3. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    4. Christopher A. Sims, 1993. "A Nine-Variable Probabilistic Macroeconomic Forecasting Model," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 179-212, National Bureau of Economic Research, Inc.
    5. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    6. Jarociński, Marek & Marcet, Albert, 2019. "Priors about observables in vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(2), pages 238-255.
    7. Pär Österholm, 2009. "Incorporating Judgement in Fan Charts," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(2), pages 387-415, June.
    8. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019. "How Sensitive Are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 229-248, Emerald Group Publishing Limited.
    9. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    10. Jaromír Beneš & Andrew Binning & Kirdan Lees, 2008. "Incorporating judgement with DSGE models," Reserve Bank of New Zealand Discussion Paper Series DP2008/10, Reserve Bank of New Zealand.
    11. Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States," Working Papers 200912, University of Pretoria, Department of Economics.
    12. Mr. Matteo Ciccarelli & Mr. Alessandro Rebucci, 2003. "Bayesian Vars: A Survey of the Recent Literature with An Application to the European Monetary System," IMF Working Papers 2003/102, International Monetary Fund.
    13. Maged Shawky Sourial, 2002. "The Future of the Stock Market Channel In Egypt," Finance 0204002, University Library of Munich, Germany.
    14. Silvia Miranda-Agrippino & Giovanni Ricco, 2021. "Bayesian local projections," Working Papers hal-03373574, HAL.
    15. Dimitris Korobilis, 2013. "Var Forecasting Using Bayesian Variable Selection," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
    16. William A Barnett & Unja Chae & John W Keating, 2012. "Forecast Design In Monetary Capital Stock Measurement," Global Journal of Economics (GJE), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 1-53.
    17. Pavel Vidal & Gilberto Ramírez & Lya Paola Sierra, 2018. "¿Por qué el Valle del Cauca ha crecido más que el promedio nacional? Un análisis regional de los ciclos y los choques económicos," Working Papers 33, Faculty of Economics and Management, Pontificia Universidad Javeriana Cali.
    18. Francis Neville & Owyang Michael T. & Sekhposyan Tatevik, 2012. "The Local Effects of Monetary Policy," The B.E. Journal of Macroeconomics, De Gruyter, vol. 12(2), pages 1-38, March.
    19. Rangan Gupta & Monique Reid, 2013. "Macroeconomic surprises and stock returns in South Africa," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 30(3), pages 266-282, July.
    20. Todd E. Clark & Michael W. McCracken, 2009. "Combining Forecasts from Nested Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 303-329, June.

    More about this item

    Keywords

    Forecasting; Bayesian inference; Bayesian autoregressive distributed lag model; optimal prior; Litterman prior; business cycle; mixed estimation; grid search;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • N14 - Economic History - - Macroeconomics and Monetary Economics; Industrial Structure; Growth; Fluctuations - - - Europe: 1913-
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:17273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.