IDEAS home Printed from https://ideas.repec.org/p/oeg/wpaper/2014-02.html
   My bibliography  Save this paper

The influence of meteorological conditions on dairy production

Author

Listed:
  • Roibás, David
  • Wall, Alan
  • Pérez, José A.

Abstract

Relatively little attention has been paid in the economics literature to the effects of meteorological conditions on milk production. Meteorological variables can be expected to affect milk production through their impact on the productivity of cows and foodstuff production. Rather than including meteorological variables as inputs in the milk production process, we propose a production function where temperature and humidity directly affect the productivity of cows and where a series of meteorological variables can affect the productivity of expenditure on foodstuff, thereby indirectly affecting milk production. Using production and meteorological data from the Spanish region of Asturias corresponding to 382 dairy farms observed during a 6-year period from 2006 to 2011, the results from our estimated production function show the important impact of meteorology on dairy production. On average, we find a difference of 10% in variable profits due to operating under favourable or unfavourable weather conditions.

Suggested Citation

  • Roibás, David & Wall, Alan & Pérez, José A., 2014. "The influence of meteorological conditions on dairy production," Efficiency Series Papers 2014/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
  • Handle: RePEc:oeg:wpaper:2014/02
    as

    Download full text from publisher

    File URL: https://www.unioviedo.es/oeg/ESP/esp_2014_02.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barrios, Salvador & Ouattara, Bazoumana & Strobl, Eric, 2008. "The impact of climatic change on agricultural production: Is it different for Africa?," Food Policy, Elsevier, vol. 33(4), pages 287-298, August.
    2. Deep Mukherjee & Boris E. Bravo-Ureta & Albert De Vries, 2013. "Dairy productivity and climatic conditions: econometric evidence from South-eastern United States," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(1), pages 123-140, January.
    3. Tom Kompas & Tuong Nhu Che, 2006. "Technology choice and efficiency on Australian dairy farms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(1), pages 65-83, March.
    4. Munir Ahmad & Boris E. Bravo-Ureta, 1995. "An Econometric Decomposition of Dairy Output Growth," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(4), pages 914-921.
    5. David Roibas & Antonio Alvarez, 2012. "The contribution of genetics to milk composition: evidence from Spain," Agricultural Economics, International Association of Agricultural Economists, vol. 43(2), pages 133-141, March.
    6. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    7. del Corral, J. & Pérez, J.A. & Roibás, D., 2010. "The impact of land fragmentation on milk production," Efficiency Series Papers 2010/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    8. Murat Isik & Stephen Devadoss, 2006. "An analysis of the impact of climate change on crop yields and yield variability," Applied Economics, Taylor & Francis Journals, vol. 38(7), pages 835-844.
    9. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    10. Víctor Moreira & Boris Bravo-Ureta, 2010. "Technical efficiency and metatechnology ratios for dairy farms in three southern cone countries: a stochastic meta-frontier model," Journal of Productivity Analysis, Springer, vol. 33(1), pages 33-45, February.
    11. Topp, Cairistiona F. E. & Doyle, Christopher J., 1996. "Simulating the impact of global warming on milk and forage production in Scotland: 1. The effects on dry-matter yield of grass and grass-white clover swards," Agricultural Systems, Elsevier, vol. 52(2-3), pages 213-242.
    12. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    13. repec:zwi:journl:v:57:y:2013:i:1:p:123-140 is not listed on IDEAS
    14. Rafael Cuesta, 2000. "A Production Model With Firm-Specific Temporal Variation in Technical Inefficiency: With Application to Spanish Dairy Farms," Journal of Productivity Analysis, Springer, vol. 13(2), pages 139-158, March.
    15. Kenta Tanaka & Shunsuke Managi & Katsunobu Kondo & Kiyotaka Masuda & Yasutaka Yamamoto, 2011. "Potential Climate Effect On Japanese Rice Productivity," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 237-255.
    16. Sherlund, Shane M. & Barrett, Christopher B. & Adesina, Akinwumi A., 2002. "Smallholder technical efficiency controlling for environmental production conditions," Journal of Development Economics, Elsevier, vol. 69(1), pages 85-101, October.
    17. Nazmi Demir & Syed F. Mahmud, 2002. "Agro-Climatic Conditions and Regional Technical Inefficiencies in Agriculture," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 50(3), pages 269-280, November.
    18. Topp, Cairistiona F. E. & Doyle, Christopher J., 1996. "Simulating the impact of global warming on milk and forage production in Scotland: 2. The effects on milk yields and grazing management of dairy herds," Agricultural Systems, Elsevier, vol. 52(2-3), pages 243-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2021. "Latent Class Modelling for a Robust Assessment of Productivity: Application to French Grazing Livestock Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(3), pages 760-781, September.
    2. Dios-Palomares, Rafaela & José-Diz, David Alcaide & Jurado, Manuel & Guijarro, Angel Prieto & Martinez-Paz, J. M. & Zúniga-González, Carlos Alberto, 2015. "Aspectos medioambientales en los análisis de eficiencia," Revista Iberoamericana de Bioeconomía y Cambio Climàtico, National Autonomous University of Nicaragua, Leon, vol. 1(1), pages 1-7, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose A. Perez‐Mendez & David Roibas & Alan Wall, 2019. "The influence of weather conditions on dairy production," Agricultural Economics, International Association of Agricultural Economists, vol. 50(2), pages 165-175, March.
    2. Aizhen Li & Boris E. Bravo-Ureta & David K. Okello & Carl M. Deom & Naveen Puppala, 2013. "Groundnut Production and Climatic Variability: Evidence from Uganda," Working Papers 17, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.
    3. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    4. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    5. Chen, Shuai & Gong, Binlei, 2021. "Response and adaptation of agriculture to climate change: Evidence from China," Journal of Development Economics, Elsevier, vol. 148(C).
    6. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1276-1301.
    7. Tao Xiang & Tariq H. Malik & Jack W. Hou & Jiliang Ma, 2022. "The Impact of Climate Change on Agricultural Total Factor Productivity: A Cross-Country Panel Data Analysis, 1961–2013," Agriculture, MDPI, vol. 12(12), pages 1-20, December.
    8. Denisard Alves & Paula Pereda, 2019. "Climate and Weather Impacts on Agriculture: The Case of Brazil," Working Papers, Department of Economics 2019_23, University of São Paulo (FEA-USP).
    9. Qi, Lingqiao & Bravo-Ureta, Boris E. & Cabrera, Victor E., 2014. "From Cold To Hot: A Preliminary Analysis Of Climatic Effects On The Productivity Of Wisconsin Dairy Farms," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 172411, Agricultural and Applied Economics Association.
    10. Sheng, Yu & Zhao, Shiji & Yang, Sansi, 2021. "Weather shocks, adaptation and agricultural TFP: A cross-region comparison of Australian Broadacre farms," Energy Economics, Elsevier, vol. 101(C).
    11. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2023. "The Impact of Climate Change on Risk and Return in Indian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 1-27, May.
    12. Meyer, Kevin & Keiser, David A., 2016. "Adapting to Climate Change Through Tile Drainage: A Structural Ricardian Analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235932, Agricultural and Applied Economics Association.
    13. Massetti, Emanuele & Mendelsohn, Robert, 2017. "Do Temperature Thresholds Threaten American Farmland?," EIA: Climate Change: Economic Impacts and Adaptation 263482, Fondazione Eni Enrico Mattei (FEEM).
    14. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    15. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    16. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    17. Zeynep K. Hansen & Gary D. Libecap & Scott E. Lowe, 2011. "Climate Variability and Water Infrastructure: Historical Experience in the Western United States," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 253-280, National Bureau of Economic Research, Inc.
    18. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    19. Yun, Seong Do & Gramig, Benjamin M & Delgado, Michael S. & Florax, Raymond J.G.M., 2015. "Does Spatial Correlation Matter in Econometric Models of Crop Yield Response and Weather?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205465, Agricultural and Applied Economics Association.
    20. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oeg:wpaper:2014/02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Luis Orea or David Roibas (email available below). General contact details of provider: https://edirc.repec.org/data/geovies.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.