IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00242990.html
   My bibliography  Save this paper

Stochastic Approximations and Differential Inclusions

Author

Listed:
  • Michel Benaïm

    () (Université de Neuchâtel)

  • Josef Hofbauer

    (UCL - University College of London [London])

  • Sylvain Sorin

    (CECO - Laboratoire d'économétrie de l'École polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

Abstract

The dynamical systems approach to stochastic approximation is generalized to the case where the mean differential equation is replaced by a differential inclusion. The limit set theorem of Bena\"{\i}m and Hirsch is extended to this situation. Internally chain transitive sets and attractors are studied in detail for set-valued dynamical systems. Applications to game theory are given, in particular to Blackwell's approachability theorem and the convergence of fictitious play.

Suggested Citation

  • Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2003. "Stochastic Approximations and Differential Inclusions," Working Papers hal-00242990, HAL.
  • Handle: RePEc:hal:wpaper:hal-00242990
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-00242990
    as

    Download full text from publisher

    File URL: https://hal.archives-ouvertes.fr/hal-00242990/document
    Download Restriction: no

    References listed on IDEAS

    as
    1. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    2. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
    3. Gilboa, Itzhak & Matsui, Akihiko, 1991. "Social Stability and Equilibrium," Econometrica, Econometric Society, vol. 59(3), pages 859-867, May.
    4. Michel Benaim & Josef Hofbauer & Sylvain Sorin, 2005. "Stochastic Approximations and Differential Inclusions II: Applications," Levine's Bibliography 784828000000000098, UCLA Department of Economics.
    5. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andriy Zapechelnyuk, 2009. "Limit Behavior of No-regret Dynamics," Discussion Papers 21, Kyiv School of Economics.
    2. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    3. Josef Hofbauer & Sylvain Sorin & Yannick Viossat, 2009. "Time Average Replicator and Best-Reply Dynamics," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 263-269, May.
    4. repec:hal:wpaper:hal-00713871 is not listed on IDEAS
    5. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    6. Kuzmics, Christoph & Balkenborg, Dieter & Hofbauer, Josef, 2013. "Refined best-response correspondence and dynamics," Theoretical Economics, Econometric Society, vol. 8(1), January.
    7. Russell Golman, 2011. "Why learning doesn’t add up: equilibrium selection with a composition of learning rules," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 719-733, November.
    8. Ziv Gorodeisky, 2008. "Stochastic Approximation of Discontinuous Dynamics," Discussion Paper Series dp496, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    9. Perkins, S. & Leslie, D.S., 2014. "Stochastic fictitious play with continuous action sets," Journal of Economic Theory, Elsevier, vol. 152(C), pages 179-213.
    10. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2005. "Stochastic Approximations and Differential Inclusions; Part II: Applications," Working Papers hal-00242974, HAL.
    11. Balkenborg, Dieter & Hofbauer, Josef & Kuzmics, Christoph, 2016. "Refined best reply correspondence and dynamics," Center for Mathematical Economics Working Papers 451, Center for Mathematical Economics, Bielefeld University.
    12. Michel Benaim & Olivier Raimond, 2007. "Simulated Annealing, Vertex-Reinforced Random Walks and Learning in Games," Levine's Bibliography 122247000000001702, UCLA Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00242990. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.