IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v152y2014icp179-213.html
   My bibliography  Save this article

Stochastic fictitious play with continuous action sets

Author

Listed:
  • Perkins, S.
  • Leslie, D.S.

Abstract

Continuous action space games are ubiquitous in economics. However, whilst learning dynamics in normal form games with finite action sets are now well studied, it is not until recently that their continuous action space counterparts have been examined. We extend stochastic fictitious play to the continuous action space framework. In normal form games with finite action sets the limiting behaviour of a discrete time learning process is often studied using its continuous time counterpart via stochastic approximation. In this paper we study stochastic fictitious play in games with continuous action spaces using the same method. This requires the asymptotic pseudo-trajectory approach to stochastic approximation to be extended to Banach spaces. In particular the limiting behaviour of stochastic fictitious play is studied using the associated smooth best response dynamics on the space of finite signed measures. Using this approach, stochastic fictitious play is shown to converge to an equilibrium point in two-player zero-sum games and a stochastic fictitious play-like process is shown to converge to an equilibrium in negative definite single population games.

Suggested Citation

  • Perkins, S. & Leslie, D.S., 2014. "Stochastic fictitious play with continuous action sets," Journal of Economic Theory, Elsevier, vol. 152(C), pages 179-213.
  • Handle: RePEc:eee:jetheo:v:152:y:2014:i:c:p:179-213
    DOI: 10.1016/j.jet.2014.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022053114000623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jet.2014.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Oechssler, Jorg & Riedel, Frank, 2002. "On the Dynamic Foundation of Evolutionary Stability in Continuous Models," Journal of Economic Theory, Elsevier, vol. 107(2), pages 223-252, December.
    3. Hofbauer, Josef & Oechssler, Jörg & Riedel, Frank, 2009. "Brown-von Neumann-Nash dynamics: The continuous strategy case," Games and Economic Behavior, Elsevier, vol. 65(2), pages 406-429, March.
    4. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    5. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    6. Shwartz, Adam & Berman, Nadav, 1989. "Abstract stochastic approximations and applications," Stochastic Processes and their Applications, Elsevier, vol. 31(1), pages 133-149, March.
    7. Fudenberg Drew & Kreps David M., 1993. "Learning Mixed Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 320-367, July.
    8. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    9. Lahkar, Ratul & Riedel, Frank, 2016. "The Continuous Logit Dynamic and Price Dispersion," Center for Mathematical Economics Working Papers 521, Center for Mathematical Economics, Bielefeld University.
    10. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
    11. Chen, Xiaohong & White, Halbert, 1998. "Nonparametric Adaptive Learning with Feedback," Journal of Economic Theory, Elsevier, vol. 82(1), pages 190-222, September.
    12. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    13. Cressman, Ross, 2005. "Stability of the replicator equation with continuous strategy space," Mathematical Social Sciences, Elsevier, vol. 50(2), pages 127-147, September.
    14. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2003. "Stochastic Approximations and Differential Inclusions," Working Papers hal-00242990, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    2. Leslie, David S. & Collins, E.J., 2006. "Generalised weakened fictitious play," Games and Economic Behavior, Elsevier, vol. 56(2), pages 285-298, August.
    3. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    4. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    5. Lahkar, Ratul & Mukherjee, Sayan & Roy, Souvik, 2022. "Generalized perturbed best response dynamics with a continuum of strategies," Journal of Economic Theory, Elsevier, vol. 200(C).
    6. Ratul Lahkar & Sayan Mukherjee & Souvik Roy, 2022. "A Deterministic Approximation Approach to the Continuum Logit Dynamic with an Application to Supermodular Games," Working Papers 79, Ashoka University, Department of Economics.
    7. Jakub Bielawski & Thiparat Chotibut & Fryderyk Falniowski & Michal Misiurewicz & Georgios Piliouras, 2022. "Unpredictable dynamics in congestion games: memory loss can prevent chaos," Papers 2201.10992, arXiv.org, revised Jan 2022.
    8. Williams, Noah, 2022. "Learning and equilibrium transitions: Stochastic stability in discounted stochastic fictitious play," Journal of Economic Dynamics and Control, Elsevier, vol. 145(C).
    9. RatulLahkar & Sayan Mukherjee & Souvik Roy, 2021. "Generalized Perturbed Best Response Dynamics with a Continuum of Strategies," Working Papers 51, Ashoka University, Department of Economics.
    10. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    11. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2005. "Stochastic Approximations and Differential Inclusions; Part II: Applications," Working Papers hal-00242974, HAL.
    12. Lahkar, Ratul & Riedel, Frank, 2015. "The logit dynamic for games with continuous strategy sets," Games and Economic Behavior, Elsevier, vol. 91(C), pages 268-282.
    13. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    14. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    15. Michel Benaim & Mathieu Faure, 2010. "Stochastic Approximation, Cooperative Dynamics and Supermodular Games," Levine's Working Paper Archive 814577000000000437, David K. Levine.
    16. Mengel, Friederike, 2012. "Learning across games," Games and Economic Behavior, Elsevier, vol. 74(2), pages 601-619.
    17. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.
    18. Ignacio Esponda & Demian Pouzo, 2016. "Berk–Nash Equilibrium: A Framework for Modeling Agents With Misspecified Models," Econometrica, Econometric Society, vol. 84, pages 1093-1130, May.
    19. Lahkar, Ratul & Riedel, Frank, 2016. "The Continuous Logit Dynamic and Price Dispersion," Center for Mathematical Economics Working Papers 521, Center for Mathematical Economics, Bielefeld University.
    20. Ratul, Lahkar, 2011. "The dynamic instability of dispersed price equilibria," Journal of Economic Theory, Elsevier, vol. 146(5), pages 1796-1827, September.

    More about this item

    Keywords

    Stochastic fictitious play; Learning in games; Continuous action set games; Abstract stochastic approximation;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:152:y:2014:i:c:p:179-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.