IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02098605.html
   My bibliography  Save this paper

Flickering in Information Spreading Precedes Critical Transitions in Financial Markets

Author

Listed:
  • Hayette Gatfaoui

    (IÉSEG School Of Management [Puteaux], CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

  • Philippe de Peretti

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

As many complex dynamical systems, financial markets exhibit sudden changes or tipping points that can turn into systemic risk. This paper aims at building and validating a new class of early warning signals of critical transitions. We base our analysis on information spreading patterns in dynamic temporal networks, where nodes are connected by short-term causality. Before a tipping point occurs, we observe flickering in information spreading, as measured by clustering coefficients. Nodes rapidly switch between "being in" and "being out" the information diffusion process. Concurrently, stock markets start to desynchronize. To capture these features, we build two early warning indicators based on the number of regime switches, and on the time between two switches. We divide our data into two sub-samples. Over the first one, using receiver operating curve, we show that we are able to detect a tipping point about one year before it occurs. For instance, our empirical model perfectly predicts the Global Financial Crisis. Over the second sub-sample, used as a robustness check, our two statistical metrics also capture, to a large extent, the 2016 financial turmoil. Our results suggest that our indicators have informational content about a future tipping point, and have therefore strong policy implications.

Suggested Citation

  • Hayette Gatfaoui & Philippe de Peretti, 2019. "Flickering in Information Spreading Precedes Critical Transitions in Financial Markets," Post-Print hal-02098605, HAL.
  • Handle: RePEc:hal:journl:hal-02098605
    DOI: 10.1038/s41598-019-42223-9
    Note: View the original document on HAL open archive server: https://hal.science/hal-02098605v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02098605v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41598-019-42223-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    2. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    3. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    4. Fabio Saracco & Riccardo Di Clemente & Andrea Gabrielli & Tiziano Squartini, 2015. "Detecting early signs of the 2007-2008 crisis in the world trade," Papers 1508.03533, arXiv.org, revised Jul 2016.
    5. He, Zhongfang & Maheu, John M., 2010. "Real time detection of structural breaks in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Breitenfellner, Bastian & Wagner, Niklas, 2012. "Explaining aggregate credit default swap spreads," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 18-29.
    8. Dimitrios Bisias & Mark Flood & Andrew W. Lo & Stavros Valavanis, 2012. "A Survey of Systemic Risk Analytics," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 255-296, October.
    9. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    10. Tiziano Squartini & Iman van Lelyveld & Diego Garlaschelli, 2013. "Early-warning signals of topological collapse in interbank networks," Papers 1302.2063, arXiv.org, revised Nov 2013.
    11. Lei Dai & Kirill S. Korolev & Jeff Gore, 2013. "Slower recovery in space before collapse of connected populations," Nature, Nature, vol. 496(7445), pages 355-358, April.
    12. Triacca, Umberto, 1998. "Non-causality: The role of the omitted variables," Economics Letters, Elsevier, vol. 60(3), pages 317-320, September.
    13. Francq, Christian & ZakoI¨an, Jean-Michel, 2008. "Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3027-3046, February.
    14. Rong Wang & John A. Dearing & Peter G. Langdon & Enlou Zhang & Xiangdong Yang & Vasilis Dakos & Marten Scheffer, 2012. "Flickering gives early warning signals of a critical transition to a eutrophic lake state," Nature, Nature, vol. 492(7429), pages 419-422, December.
    15. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail, Mohd Sabri & Noorani, Mohd Salmi Md & Ismail, Munira & Razak, Fatimah Abdul & Alias, Mohd Almie, 2022. "Early warning signals of financial crises using persistent homology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Christophe Chorro & Emmanuelle Jay & Philippe de Peretti & Thibault Soler, 2021. "Frequency causality measures and Vector AutoRegressive (VAR) models: An improved subset selection method suited to parsimonious systems," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03216938, HAL.
    3. Tilman, Andrew R. & Krueger, Elisabeth H. & McManus, Lisa C. & Watson, James R., 2024. "Maintaining human wellbeing as socio-environmental systems undergo regime shifts," Ecological Economics, Elsevier, vol. 221(C).
    4. Paul Hutchings & Simon Willcock & Kenneth Lynch & Dilshaad Bundhoo & Tim Brewer & Sarah Cooper & Daniel Keech & Sneha Mekala & Prajna Paramita Mishra & Alison Parker & Charlie M. Shackleton & Kongala , 2022. "Understanding rural–urban transitions in the Global South through peri-urban turbulence," Nature Sustainability, Nature, vol. 5(11), pages 924-930, November.
    5. Song, Shijia & Li, Handong, 2025. "Can topological transitions in cryptocurrency systems serve as early warning signals for extreme fluctuations in traditional markets?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 657(C).
    6. Christophe Chorro & Emmanuelle Jay & Philippe de Peretti & Thibault Soler, 2021. "Frequency causality measures and Vector AutoRegressive (VAR) models: An improved subset selection method suited to parsimonious systems," Post-Print halshs-03216938, HAL.
    7. Andrew R. Tilman & Elisabeth H. Krueger & Lisa C. McManus & James R. Watson, 2023. "Maintaining human wellbeing as socio-environmental systems undergo regime shifts," Papers 2309.04578, arXiv.org.
    8. An, Sufang & An, Feng & Gao, Xiangyun & Wang, Anjian, 2023. "Early warning of critical transitions in crude oil price," Energy, Elsevier, vol. 280(C).
    9. Christophe Chorro & Emmanuelle Jay & Philippe De Peretti & Thibault Soler, 2021. "Frequency causality measures and Vector AutoRegressive (VAR) models: An improved subset selection method suited to parsimonious systems," Documents de travail du Centre d'Economie de la Sorbonne 21013, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    2. Christophe Chorro & Emmanuelle Jay & Philippe De Peretti & Thibault Soler, 2021. "Frequency causality measures and Vector AutoRegressive (VAR) models: An improved subset selection method suited to parsimonious systems," Documents de travail du Centre d'Economie de la Sorbonne 21013, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
    4. Corsi, Fulvio & Lillo, Fabrizio & Pirino, Davide & Trapin, Luca, 2018. "Measuring the propagation of financial distress with Granger-causality tail risk networks," Journal of Financial Stability, Elsevier, vol. 38(C), pages 18-36.
    5. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    6. Billio, Monica & Casarin, Roberto & Costola, Michele & Pasqualini, Andrea, 2016. "An entropy-based early warning indicator for systemic risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 45(C), pages 42-59.
    7. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    8. Lumsdaine, R.L. & Rockmore, D.N. & Foti, N.J. & Leibon, G. & Farmer, J.D., 2021. "The intrafirm complexity of systemically important financial institutions," Journal of Financial Stability, Elsevier, vol. 52(C).
    9. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    10. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    11. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Bauwens, Luc & De Backer, Bruno & Dufays, Arnaud, 2014. "A Bayesian method of change-point estimation with recurrent regimes: Application to GARCH models," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 207-229.
    13. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    14. Monica Billio & Lorenzo Frattarolo & Hayette Gatfaoui & Philippe de Peretti, 2016. "Clustering in Dynamic Causal Networks as a Measure of Systemic Risk on the Euro Zone," Documents de travail du Centre d'Economie de la Sorbonne 16046r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Sep 2016.
    15. Gerrit Reher & Bernd Wilfling, 2016. "A nesting framework for Markov-switching GARCH modelling with an application to the German stock market," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 411-426, March.
    16. Frank Hespeler & Giuseppe Loiacono, 2017. "Monitoring systemic risk in the hedge fund sector," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1859-1883, December.
    17. Wu, Fei & Zhang, Dayong & Zhang, Zhiwei, 2019. "Connectedness and risk spillovers in China’s stock market: A sectoral analysis," Economic Systems, Elsevier, vol. 43(3).
    18. Wee, Damien C.H. & Chen, Feng & Dunsmuir, William T.M., 2022. "Likelihood inference for Markov switching GARCH(1,1) models using sequential Monte Carlo," Econometrics and Statistics, Elsevier, vol. 21(C), pages 50-68.
    19. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    20. Domenico Di Gangi & Fabrizio Lillo & Davide Pirino, 2015. "Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction," Papers 1509.00607, arXiv.org, revised Jul 2018.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02098605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.