IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01353763.html
   My bibliography  Save this paper

Designing Coalition-Based Fair and Stable Pricing Mechanisms Under Private Information on Consumers' Reservation Prices

Author

Listed:
  • Hélène Le Cadre

    (EnergyVille)

  • Bernardo Pagnoncelli

    (Santiago - University Adolfo Ibanez)

  • Tito Homem-De-Mello

    (Santiago - University Adolfo Ibanez)

  • Olivier Beaude

Abstract

We model the relation between an aggregator and consumers joining a coalition to reduce the risk resulting from the unpredictability of their base load demand, as a Stackelberg game formulated as a mathematical bilevel program with private information on the consumers' reservation prices. At the upper-level of the Stackelberg game, the aggregator optimizes his daily price profile so as to reach a net targeted profit which is the maximum value guaranteeing that no consumer will leave the coalition - to contract with a conventional retailer considered here as a fixed alternative - while meeting fairness criterion imposed by the cost-sharing mechanism. At the lower-level, the consumers are asked to provide in day ahead an estimate of their base load hourly demand profile and to schedule their shiftable loads depending on the price signal sent by the aggregator. We provide algorithms that determine the unique price profile and consumer shiftable load schedules as functions of the reservation price estimates. The Stackelberg game between the aggregator and the consumers being repeated for a period of time, the aggregator has the possibility to update his estimates of the reservation prices relying on a feedback function which depends on the percentage of activated loads. A randomized algorithm for consumers' reservation price learning based on regret minimization is provided. For four cost-sharing mechanisms such as uniform allocation, stand-alone cost, Shapley value, separable and non-separable costs, we determine the closed form of the aggregator's optimal net targeted profit guaranteeing the stability of the coalition. We also determine conditions guaranteeing the core non-emptiness and prove that for a profit-maximizing aggregator, the stand-alone cost is always preferable to the Shapley value, which coincides with the uniform allocation. Furthermore, the optimal size of the coalition - in terms of the aggregator's profit - can be determined analytically when the Shapley value is implemented as cost-sharing mechanism. The results are illustrated on a case study where we show that there exists an optimal net targeted profit below which the consumers energy bill is lower when joining the aggregator than with the conventional retailer. Coalition dynamics is also analyzed numerically depending on the consumer inertia in their energy supplier choice process, for each cost-sharing mechanism.

Suggested Citation

  • Hélène Le Cadre & Bernardo Pagnoncelli & Tito Homem-De-Mello & Olivier Beaude, 2018. "Designing Coalition-Based Fair and Stable Pricing Mechanisms Under Private Information on Consumers' Reservation Prices," Post-Print hal-01353763, HAL.
  • Handle: RePEc:hal:journl:hal-01353763
    Note: View the original document on HAL open archive server: https://hal.science/hal-01353763v3
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01353763v3/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. LE CADRE, Hélène & PAPAVASILIOU, Anthony & SMEERS, Yves, 2015. "Wind farm portfolio optimization under network capacity constraints," LIDAM Reprints CORE 2689, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    3. Javad Nasiry & Ioana Popescu, 2012. "Advance Selling When Consumers Regret," Management Science, INFORMS, vol. 58(6), pages 1160-1177, June.
    4. Frisk, M. & Göthe-Lundgren, M. & Jörnsten, K. & Rönnqvist, M., 2010. "Cost allocation in collaborative forest transportation," European Journal of Operational Research, Elsevier, vol. 205(2), pages 448-458, September.
    5. Baosen Zhang & Ramesh Johari & Ram Rajagopal, 2015. "Competition and Efficiency of Coalitions in Cournot Games with Uncertainty," Papers 1503.02479, arXiv.org, revised Aug 2017.
    6. Hélène Le Cadre, 2018. "On the Efficiency of Local Electricity Markets Under Decentralized and Centralized Designs: A Multi-leader Stackelberg Game Analysis," Working Papers hal-01619885, HAL.
    7. Omar Besbes & Assaf Zeevi, 2015. "On the (Surprising) Sufficiency of Linear Models for Dynamic Pricing with Demand Learning," Management Science, INFORMS, vol. 61(4), pages 723-739, April.
    8. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    9. Zhao, Li & Tian, Peng & Xiangyong Li, 2012. "Dynamic pricing in the presence of consumer inertia," Omega, Elsevier, vol. 40(2), pages 137-148, April.
    10. Clay Campaigne & Shmuel S. Oren, 2016. "Firming renewable power with demand response: an end-to-end aggregator business model," Journal of Regulatory Economics, Springer, vol. 50(1), pages 1-37, August.
    11. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, December.
    12. Hung-po Chao & Shmuel S. Oren & Stephen A. Smith & Robert B. Wilson, 1988. "Priority Service: Market Structure and Competition," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 77-104.
    13. Hart, Sergiu & Kurz, Mordecai, 1983. "Endogenous Formation of Coalitions," Econometrica, Econometric Society, vol. 51(4), pages 1047-1064, July.
    14. Zugno, Marco & Morales, Juan Miguel & Pinson, Pierre & Madsen, Henrik, 2013. "A bilevel model for electricity retailers' participation in a demand response market environment," Energy Economics, Elsevier, vol. 36(C), pages 182-197.
    15. Hélène Le Cadre & Anthony Papavasiliou & Yves Smeers, 2015. "Wind Farm Portfolio Optimization under Network Capacity Constraints," Post-Print hal-01007992, HAL.
    16. Tatsiana Levina & Yuri Levin & Jeff McGill & Mikhail Nediak, 2009. "Dynamic Pricing with Online Learning and Strategic Consumers: An Application of the Aggregating Algorithm," Operations Research, INFORMS, vol. 57(2), pages 327-341, April.
    17. Arnold, Tone & Schwalbe, Ulrich, 2002. "Dynamic coalition formation and the core," Journal of Economic Behavior & Organization, Elsevier, vol. 49(3), pages 363-380, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hélène Le Cadre & Bernardo Pagnoncelli & Tito Homem-De-Mello & Olivier Beaude, 2018. "Designing Coalition-Based Fair and Stable Pricing Mechanisms Under Private Information on Consumers' Reservation Prices," Working Papers hal-01353763, HAL.
    2. Le Cadre, Hélène & Pagnoncelli, Bernardo & Homem-de-Mello, Tito & Beaude, Olivier, 2019. "Designing coalition-based fair and stable pricing mechanisms under private information on consumers’ reservation prices," European Journal of Operational Research, Elsevier, vol. 272(1), pages 270-291.
    3. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    4. Le Cadre, Hélène & Mezghani, Ilyès & Papavasiliou, Anthony, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," European Journal of Operational Research, Elsevier, vol. 274(1), pages 317-339.
    5. Hélène Le Cadre, 2019. "On the efficiency of local electricity markets under decentralized and centralized designs: a multi-leader Stackelberg game analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 953-984, December.
    6. Arthur Charpentier & Romuald Elie & Carl Remlinger, 2020. "Reinforcement Learning in Economics and Finance," Papers 2003.10014, arXiv.org.
    7. Galbiati, Marco & Soramäki, Kimmo, 2011. "An agent-based model of payment systems," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 859-875, June.
    8. Ekmekci, Mehmet & Gossner, Olivier & Wilson, Andrea, 2012. "Impermanent types and permanent reputations," Journal of Economic Theory, Elsevier, vol. 147(1), pages 162-178.
    9. Laurent Lamy, 2013. "“Upping the ante”: how to design efficient auctions with entry?," RAND Journal of Economics, RAND Corporation, vol. 44(2), pages 194-214, June.
    10. Schipper, Burkhard C., 2021. "Discovery and equilibrium in games with unawareness," Journal of Economic Theory, Elsevier, vol. 198(C).
    11. Mathieu Faure & Gregory Roth, 2010. "Stochastic Approximations of Set-Valued Dynamical Systems: Convergence with Positive Probability to an Attractor," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 624-640, August.
    12. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    13. ,, 2011. "Manipulative auction design," Theoretical Economics, Econometric Society, vol. 6(2), May.
    14. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    15. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    16. Saori Iwanaga & Akira Namatame, 2015. "Hub Agents Determine Collective Behavior," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 165-181.
    17. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    18. Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
      • Jacob Crandall & Mayada Oudah & Fatimah Ishowo-Oloko Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Post-Print hal-01897802, HAL.
    19. Dieter Balkenborg & Rosemarie Nagel, 2016. "An Experiment on Forward vs. Backward Induction: How Fairness and Level k Reasoning Matter," German Economic Review, Verein für Socialpolitik, vol. 17(3), pages 378-408, August.
    20. B Kelsey Jack, 2009. "Auctioning Conservation Contracts in Indonesia - Participant Learning in Multiple Trial Rounds," CID Working Papers 35, Center for International Development at Harvard University.

    More about this item

    Keywords

    Load Scheduling; Forecast Algorithm; Coalition Formation; Game Theory; OR in Energy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01353763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.