IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v153y2007i1p235-25610.1007-s10479-007-0176-2.html
   My bibliography  Save this article

An overview of bilevel optimization

Author

Listed:
  • Benoît Colson
  • Patrice Marcotte
  • Gilles Savard

Abstract

This paper is devoted to bilevel optimization, a branch of mathematical programming of both practical and theoretical interest. Starting with a simple example, we proceed towards a general formulation. We then present fields of application, focus on solution approaches, and make the connection with MPECs (Mathematical Programs with Equilibrium Constraints). Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
  • Handle: RePEc:spr:annopr:v:153:y:2007:i:1:p:235-256:10.1007/s10479-007-0176-2
    DOI: 10.1007/s10479-007-0176-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-007-0176-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-007-0176-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martine Labbé & Patrice Marcotte & Gilles Savard, 1998. "A Bilevel Model of Taxation and Its Application to Optimal Highway Pricing," Management Science, INFORMS, vol. 44(12-Part-1), pages 1608-1622, December.
    2. Hanif D. Sherali & Allen L. Soyster & Frederic H. Murphy, 1983. "Stackelberg-Nash-Cournot Equilibria: Characterizations and Computations," Operations Research, INFORMS, vol. 31(2), pages 253-276, April.
    3. Jerome Bracken & James T. McGill, 1974. "Defense Applications of Mathematical Programs with Optimization Problems in the Constraints," Operations Research, INFORMS, vol. 22(5), pages 1086-1096, October.
    4. Jerome Bracken & James T. McGill, 1973. "Mathematical Programs with Optimization Problems in the Constraints," Operations Research, INFORMS, vol. 21(1), pages 37-44, February.
    5. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    6. Bard, Jonathan F. & Plummer, John & Claude Sourie, Jean, 2000. "A bilevel programming approach to determining tax credits for biofuel production," European Journal of Operational Research, Elsevier, vol. 120(1), pages 30-46, January.
    7. Luce Brotcorne & Martine Labbé & Patrice Marcotte & Gilles Savard, 2001. "A Bilevel Model for Toll Optimization on a Multicommodity Transportation Network," Transportation Science, INFORMS, vol. 35(4), pages 345-358, November.
    8. Wayne F. Bialas & Mark H. Karwan, 1984. "Two-Level Linear Programming," Management Science, INFORMS, vol. 30(8), pages 1004-1020, August.
    9. C. Audet & P. Hansen & B. Jaumard & G. Savard, 1997. "Links Between Linear Bilevel and Mixed 0–1 Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 273-300, May.
    10. Patrice Marcotte & Gilles Savard, 2005. "Bilevel Programming: A Combinatorial Perspective," Springer Books, in: David Avis & Alain Hertz & Odile Marcotte (ed.), Graph Theory and Combinatorial Optimization, chapter 0, pages 191-217, Springer.
    11. Omar Ben-Ayed & Charles E. Blair, 1990. "Computational Difficulties of Bilevel Linear Programming," Operations Research, INFORMS, vol. 38(3), pages 556-560, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean Etoa, 2010. "Solving convex quadratic bilevel programming problems using an enumeration sequential quadratic programming algorithm," Journal of Global Optimization, Springer, vol. 47(4), pages 615-637, August.
    2. Bo Zeng, 2020. "A Practical Scheme to Compute the Pessimistic Bilevel Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1128-1142, October.
    3. Budnitzki, Alina, 2014. "Computation of the optimal tolls on the traffic network," European Journal of Operational Research, Elsevier, vol. 235(1), pages 247-251.
    4. Ankur Sinha & Zhichao Lu & Kalyanmoy Deb & Pekka Malo, 2020. "Bilevel optimization based on iterative approximation of multiple mappings," Journal of Heuristics, Springer, vol. 26(2), pages 151-185, April.
    5. Gabriel Lopez Zenarosa & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2021. "On exact solution approaches for bilevel quadratic 0–1 knapsack problem," Annals of Operations Research, Springer, vol. 298(1), pages 555-572, March.
    6. Thomas Kleinert & Martine Labbé & Fr¨ank Plein & Martin Schmidt, 2020. "Technical Note—There’s No Free Lunch: On the Hardness of Choosing a Correct Big-M in Bilevel Optimization," Operations Research, INFORMS, vol. 68(6), pages 1716-1721, November.
    7. Dussault, Jean-Pierre & Marcotte, Patrice & Roch, Sebastien & Savard, Gilles, 2006. "A smoothing heuristic for a bilevel pricing problem," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1396-1413, November.
    8. Juan S. Borrero & Oleg A. Prokopyev & Denis Sauré, 2019. "Sequential Interdiction with Incomplete Information and Learning," Operations Research, INFORMS, vol. 67(1), pages 72-89, January.
    9. Pramanik, Surapati & Roy, Tapan Kumar, 2007. "Fuzzy goal programming approach to multilevel programming problems," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1151-1166, January.
    10. Christine Tawfik & Sabine Limbourg, 2019. "A Bilevel Model for Network Design and Pricing Based on a Level-of-Service Assessment," Transportation Science, INFORMS, vol. 53(6), pages 1609-1626, November.
    11. Syed Aqib Jalil & Shakeel Javaid & Syed Mohd Muneeb, 2018. "A decentralized multi-level decision making model for solid transportation problem with uncertainty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1022-1033, October.
    12. Tawfik, Christine & Gendron, Bernard & Limbourg, Sabine, 2022. "An iterative two-stage heuristic algorithm for a bilevel service network design and pricing model," European Journal of Operational Research, Elsevier, vol. 300(2), pages 512-526.
    13. Mofidi, Seyed Shahab & Pazour, Jennifer A., 2019. "When is it beneficial to provide freelance suppliers with choice? A hierarchical approach for peer-to-peer logistics platforms," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 1-23.
    14. Florensa, Carlos & Garcia-Herreros, Pablo & Misra, Pratik & Arslan, Erdem & Mehta, Sanjay & Grossmann, Ignacio E., 2017. "Capacity planning with competitive decision-makers: Trilevel MILP formulation, degeneracy, and solution approaches," European Journal of Operational Research, Elsevier, vol. 262(2), pages 449-463.
    15. S A Gabriel & Y Shim & A J Conejo & S de la Torre & R García-Bertrand, 2010. "A Benders decomposition method for discretely-constrained mathematical programs with equilibrium constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(9), pages 1404-1419, September.
    16. Gabriel, Steven A. & Leuthold, Florian U., 2010. "Solving discretely-constrained MPEC problems with applications in electric power markets," Energy Economics, Elsevier, vol. 32(1), pages 3-14, January.
    17. Ashenafi Woldemariam & Semu Kassa, 2015. "Systematic evolutionary algorithm for general multilevel Stackelberg problems with bounded decision variables (SEAMSP)," Annals of Operations Research, Springer, vol. 229(1), pages 771-790, June.
    18. Li Li & Sridhar Tayur, 2005. "Medium-Term Pricing and Operations Planning in Intermodal Transportation," Transportation Science, INFORMS, vol. 39(1), pages 73-86, February.
    19. Martine Labbé & Alessia Violin, 2016. "Bilevel programming and price setting problems," Annals of Operations Research, Springer, vol. 240(1), pages 141-169, May.
    20. Junlong Zhang & Osman Y. Özaltın, 2021. "Bilevel Integer Programs with Stochastic Right-Hand Sides," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1644-1660, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:153:y:2007:i:1:p:235-256:10.1007/s10479-007-0176-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.