IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v93y1997i2d10.1023_a1022645805569.html
   My bibliography  Save this article

Links Between Linear Bilevel and Mixed 0–1 Programming Problems

Author

Listed:
  • C. Audet

    (École Polytechnique de Montréal)

  • P. Hansen

    (École des Hautes Études Commerciales and GERAD)

  • B. Jaumard

    (École Polytechnique de Montréal and GERAD)

  • G. Savard

    (École Polytechnique de Montréal and GERAD)

Abstract

We study links between the linear bilevel and linear mixed 0–1 programming problems. A new reformulation of the linear mixed 0–1 programming problem into a linear bilevel programming one, which does not require the introduction of a large finite constant, is presented. We show that solving a linear mixed 0–1 problem by a classical branch-and-bound algorithm is equivalent in a strong sense to solving its bilevel reformulation by a bilevel branch-and-bound algorithm. The mixed 0–1 algorithm is embedded in the bilevel algorithm through the aforementioned reformulation; i.e., when applied to any mixed 0–1 instance and its bilevel reformulation, they generate sequences of subproblems which are identical via the reformulation.

Suggested Citation

  • C. Audet & P. Hansen & B. Jaumard & G. Savard, 1997. "Links Between Linear Bilevel and Mixed 0–1 Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 273-300, May.
  • Handle: RePEc:spr:joptap:v:93:y:1997:i:2:d:10.1023_a:1022645805569
    DOI: 10.1023/A:1022645805569
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022645805569
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022645805569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. A. Tomlin, 1971. "Technical Note—An Improved Branch-and-Bound Method for Integer Programming," Operations Research, INFORMS, vol. 19(4), pages 1070-1075, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Roberti & Enrico Bartolini & Aristide Mingozzi, 2015. "The Fixed Charge Transportation Problem: An Exact Algorithm Based on a New Integer Programming Formulation," Management Science, INFORMS, vol. 61(6), pages 1275-1291, June.
    2. Kurt M. Bretthauer, 1994. "A penalty for concave minimization derived from the tuy cutting plane," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 455-463, April.
    3. Gavin J. Bell & Bruce W. Lamar & Chris A. Wallace, 1999. "Capacity improvement, penalties, and the fixed charge transportation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(4), pages 341-355, June.
    4. Andrew G. Loerch, 1999. "Incorporating learning curve costs in acquisition strategy optimization," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(3), pages 255-271, April.
    5. Ellis L. Johnson & George L. Nemhauser & Martin W.P. Savelsbergh, 2000. "Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 2-23, February.
    6. Jeffery L. Kennington & Charles D. Nicholson, 2010. "The Uncapacitated Time-Space Fixed-Charge Network Flow Problem: An Empirical Investigation of Procedures for Arc Capacity Assignment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 326-337, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:93:y:1997:i:2:d:10.1023_a:1022645805569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.