IDEAS home Printed from https://ideas.repec.org/p/fip/fedhwp/95159.html
   My bibliography  Save this paper

The Labor Market Consequences of Appropriate Technology

Author

Abstract

Developing countries rely on technology created by developed countries. This paper demonstrates that such reliance increases wage inequality but leads to greater production in developing countries. I study a Brazilian innovation program that taxed the leasing of international technology to subsidize national innovation. I show that the program led firms to replace technology licensed from developed countries with in-house innovations, which led to a decline in both employment and the share of high-skilled workers. Using a model of directed technological change and technology transfer, I find that increasing the share of firms that patent in Brazil by 1 p.p. decreases the skilled wage premium by 0.02% and production by 0.2%

Suggested Citation

  • Gustavo de Souza, 2022. "The Labor Market Consequences of Appropriate Technology," Working Paper Series WP 2022-53, Federal Reserve Bank of Chicago.
  • Handle: RePEc:fip:fedhwp:95159
    DOI: 10.21033/wp-2022-53
    as

    Download full text from publisher

    File URL: https://doi.org/10.21033/wp-2022-53
    Download Restriction: no

    File URL: https://libkey.io/10.21033/wp-2022-53?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elsner, Benjamin, 2013. "Emigration and wages: The EU enlargement experiment," Journal of International Economics, Elsevier, vol. 91(1), pages 154-163.
    2. Luis Garicano & Claire Lelarge & John Van Reenen, 2016. "Firm Size Distortions and the Productivity Distribution: Evidence from France," American Economic Review, American Economic Association, vol. 106(11), pages 3439-3479, November.
    3. Raffaello Bronzini & Eleonora Iachini, 2014. "Are Incentives for R&D Effective? Evidence from a Regression Discontinuity Approach," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 100-134, November.
    4. Bronwyn Hall & Alessandro Maffioli, 2008. "Evaluating the impact of technology development funds in emerging economies: evidence from Latin America," The European Journal of Development Research, Taylor and Francis Journals, vol. 20(2), pages 172-198.
    5. Bernardo S. Blum, 2010. "Endowments, Output, and the Bias of Directed Innovation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 534-559.
    6. Susanto Basu & David N. Weil, 1998. "Appropriate Technology and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1025-1054.
    7. David Card & Thomas Lemieux, 2001. "Can Falling Supply Explain the Rising Return to College for Younger Men? A Cohort-Based Analysis," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(2), pages 705-746.
    8. Tanaka, Mari & Bloom, Nicholas & David, Joel M. & Koga, Maiko, 2020. "Firm performance and macro forecast accuracy," Journal of Monetary Economics, Elsevier, vol. 114(C), pages 26-41.
    9. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    10. Scott D. Dyreng & Bradley P. Lindsey, 2009. "Using Financial Accounting Data to Examine the Effect of Foreign Operations Located in Tax Havens and Other Countries on U.S. Multinational Firms' Tax Rates," Journal of Accounting Research, Wiley Blackwell, vol. 47(5), pages 1283-1316, December.
    11. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    12. Maarten Goos & Alan Manning & Anna Salomons, 2014. "Explaining Job Polarization: Routine-Biased Technological Change and Offshoring," American Economic Review, American Economic Association, vol. 104(8), pages 2509-2526, August.
    13. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    14. Comin, Diego & Mestieri, Martí, 2014. "Technology Diffusion: Measurement, Causes, and Consequences," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 2, pages 565-622, Elsevier.
    15. Francesco Caselli & Wilbur John Coleman, 2001. "Cross-Country Technology Diffusion: The Case of Computers," American Economic Review, American Economic Association, vol. 91(2), pages 328-335, May.
    16. Wiljan van den Berge, 2019. "Automatic Reaction – What Happens to Workers at Firms that Automate?," CPB Discussion Paper 390.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    17. Cragun, Randy & Tamura, Robert & Jerzmanowski, Michal, 2017. "Directed technical change: A macro perspective on life cycle earnings profiles," MPRA Paper 81830, University Library of Munich, Germany.
    18. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    19. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    20. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    21. Chang-Tai Hsieh & Peter J. Klenow, 2009. "Misallocation and Manufacturing TFP in China and India," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 124(4), pages 1403-1448.
    22. David J. Deming, 2017. "The Growing Importance of Social Skills in the Labor Market," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1593-1640.
    23. Gino Gancia & Fabrizio Zilibotti, 2009. "Technological Change and the Wealth of Nations," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 93-120, May.
    24. Alan B. Krueger, 1993. "How Computers Have Changed the Wage Structure: Evidence from Microdata, 1984–1989," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 33-60.
    25. Sabrina T. Howell, 2017. "Financing Innovation: Evidence from R&D Grants," American Economic Review, American Economic Association, vol. 107(4), pages 1136-1164, April.
    26. Paula Bustos & Bruno Caprettini & Jacopo Ponticelli, 2016. "Agricultural Productivity and Structural Transformation: Evidence from Brazil," American Economic Review, American Economic Association, vol. 106(6), pages 1320-1365, June.
    27. Basu, Susanto & Fernald, John G, 1997. "Returns to Scale in U.S. Production: Estimates and Implications," Journal of Political Economy, University of Chicago Press, vol. 105(2), pages 249-283, April.
    28. George J. Borjas, 2021. "The Labor Demand Curve Is Downward Sloping: Reexamining The Impact Of Immigration On The Labor Market," World Scientific Book Chapters, in: Foundational Essays in Immigration Economics, chapter 9, pages 235-274, World Scientific Publishing Co. Pte. Ltd..
    29. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    30. Andrew Atkeson & Patrick J. Kehoe, 2005. "Modeling and Measuring Organization Capital," Journal of Political Economy, University of Chicago Press, vol. 113(5), pages 1026-1053, October.
    31. David S. Lee, 1999. "Wage Inequality in the United States During the 1980s: Rising Dispersion or Falling Minimum Wage?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 977-1023.
    32. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    33. Frances Stewart, 1978. "Technology and Underdevelopment," Palgrave Macmillan Books, Palgrave Macmillan, edition 0, number 978-1-349-15932-1, December.
    34. Akcigit, Ufuk & Abrams, David & Oz, Gokhan & Pearce, Jeremy, 2019. "The Patent Troll: Benign Middleman or Stick-Up Artist?," CEPR Discussion Papers 13620, C.E.P.R. Discussion Papers.
    35. Diwan, Ishac & Rodrik, Dani, 1991. "Patents, appropriate technology, and North-South trade," Journal of International Economics, Elsevier, vol. 30(1-2), pages 27-47, February.
    36. Coe, David T. & Helpman, Elhanan & Hoffmaister, Alexander W., 2009. "International R&D spillovers and institutions," European Economic Review, Elsevier, vol. 53(7), pages 723-741, October.
    37. Bronwyn Hall & Alessandro Maffioli, 2008. "Evaluating the impact of technology development funds in emerging economies: evidence from Latin America," The European Journal of Development Research, Taylor and Francis Journals, vol. 20(2), pages 172-198.
    38. Rafael Dix-Carneiro & Brian K. Kovak, 2017. "Trade Liberalization and Regional Dynamics," American Economic Review, American Economic Association, vol. 107(10), pages 2908-2946, October.
    39. Maria Pluvia Zuniga & Dominique Guellec, 2009. "Who Licenses out Patents and Why?: Lessons from a Business Survey," OECD Science, Technology and Industry Working Papers 2009/5, OECD Publishing.
    40. Jerzmanowski, Michal & Tamura, Robert, 2019. "Directed technological change & cross-country income differences: A quantitative analysis," Journal of Development Economics, Elsevier, vol. 141(C).
    41. Wiljan van den Berge, 2019. "Automatic Reaction – What Happens to Workers at Firms that Automate?," CPB Discussion Paper 390, CPB Netherlands Bureau for Economic Policy Analysis.
    42. Kaplinsky, Raphael, 2011. "Schumacher meets Schumpeter: Appropriate technology below the radar," Research Policy, Elsevier, vol. 40(2), pages 193-203, March.
    43. Trinh Le & Adam B. Jaffe, 2017. "The impact of R&D subsidy on innovation: evidence from New Zealand firms," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(5), pages 429-452, July.
    44. Wooldridge, Jeffrey M., 2009. "On estimating firm-level production functions using proxy variables to control for unobservables," Economics Letters, Elsevier, vol. 104(3), pages 112-114, September.
    45. Jixiang Yu & Kunrong Shen & Desu Liu, 2015. "Rural–Urban Migration, Substitutability of Human Capital and City Productivity: Evidence from China," Review of Development Economics, Wiley Blackwell, vol. 19(4), pages 877-891, November.
    46. Iacus, Stefano M. & King, Gary & Porro, Giuseppe, 2012. "Causal Inference without Balance Checking: Coarsened Exact Matching," Political Analysis, Cambridge University Press, vol. 20(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morchio, Iacopo & Moser, Christian, 2018. "The Gender Pay Gap: Micro Sources and Macro Consequences," MPRA Paper 99276, University Library of Munich, Germany, revised 24 Mar 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Souza, Gustavo, 2022. "The Labor Market Consequences of Appropriate Technology," CEPREMAP Working Papers (Docweb) 2208, CEPREMAP.
    2. Domini, Giacomo & Grazzi, Marco & Moschella, Daniele & Treibich, Tania, 2021. "Threats and opportunities in the digital era: Automation spikes and employment dynamics," Research Policy, Elsevier, vol. 50(7).
    3. Ke-Liang Wang & Ting-Ting Sun & Ru-Yu Xu, 2023. "The impact of artificial intelligence on total factor productivity: empirical evidence from China’s manufacturing enterprises," Economic Change and Restructuring, Springer, vol. 56(2), pages 1113-1146, April.
    4. T. Gries & R. Grundmann & I. Palnau & M. Redlin, 2017. "Innovations, growth and participation in advanced economies - a review of major concepts and findings," International Economics and Economic Policy, Springer, vol. 14(2), pages 293-351, April.
    5. Jerzmanowski, Michal & Tamura, Robert, 2019. "Directed technological change & cross-country income differences: A quantitative analysis," Journal of Development Economics, Elsevier, vol. 141(C).
    6. Alessandra Bonfiglioli & Rosario Crinò & Harald Fadinger & Gino Gancia, 2020. "Robot Imports and Firm-Level Outcomes," CESifo Working Paper Series 8741, CESifo.
    7. Jay Dixon & Bryan Hong & Lynn Wu, 2021. "The Robot Revolution: Managerial and Employment Consequences for Firms," Management Science, INFORMS, vol. 67(9), pages 5586-5605, September.
    8. Falck, Oliver & Heimisch-Roecker, Alexandra & Wiederhold, Simon, 2021. "Returns to ICT skills," Research Policy, Elsevier, vol. 50(7).
    9. Robert Stehrer, 2022. "The Impact of ICT and Intangible Capital Accumulation on Labour Demand Growth and Functional Income Shares," wiiw Working Papers 218, The Vienna Institute for International Economic Studies, wiiw.
    10. Genz, Sabrina & Schnabel, Claus, 2021. "Digging into the digital divide: Workers' exposure to digitalization and its consequences for individual employment," Discussion Papers 118, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Labour and Regional Economics.
    11. Thor Berger & Carl Benedikt Frey, 2016. "Structural Transformation in the OECD: Digitalisation, Deindustrialisation and the Future of Work," OECD Social, Employment and Migration Working Papers 193, OECD Publishing.
    12. Jonas Hjort & Jonas Poulsen, 2019. "The Arrival of Fast Internet and Employment in Africa," American Economic Review, American Economic Association, vol. 109(3), pages 1032-1079, March.
    13. Florian Hoffmann & David S. Lee & Thomas Lemieux, 2020. "Growing Income Inequality in the United States and Other Advanced Economies," Journal of Economic Perspectives, American Economic Association, vol. 34(4), pages 52-78, Fall.
    14. Janssen, Simon & Mohrenweiser, Jens, 2018. "The Shelf Life of Incumbent Workers during Accelerating Technological Change: Evidence from a Training Regulation Reform," IZA Discussion Papers 11312, Institute of Labor Economics (IZA).
    15. Yoon, Chungeun, 2023. "Technology adoption and jobs: The effects of self-service kiosks in restaurants on labor outcomes," Technology in Society, Elsevier, vol. 74(C).
    16. Heyman, Fredrik & Norbäck, Pehr-Johan & Persson, Lars, 2021. "Automation, Work and Productivity: The Role of Firm Heterogeneity," Working Paper Series 1382, Research Institute of Industrial Economics, revised 09 Mar 2023.
    17. M. Battisti & M. Del Gatto & A. F. Gravina & C. F. Parmeter, 2021. "Robots versus labor skills: a complementarity/substitutability analysis," Working Paper CRENoS 202104, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    18. Goos, Maarten & Rademakers, Emilie & Röttger, Ronja, 2021. "Routine-Biased technical change: Individual-Level evidence from a plant closure," Research Policy, Elsevier, vol. 50(7).
    19. Luis Garicano & Claire Lelarge & John Van Reenen, 2016. "Firm Size Distortions and the Productivity Distribution: Evidence from France," American Economic Review, American Economic Association, vol. 106(11), pages 3439-3479, November.
    20. M. Battisti & F. Belloc & M. Del Gatto, 2017. "Technology-specific Production Functions," Working Paper CRENoS 201709, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.

    More about this item

    Keywords

    appropriate technology; directed technological change; innovation;
    All these keywords.

    JEL classification:

    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedhwp:95159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lauren Wiese (email available below). General contact details of provider: https://edirc.repec.org/data/frbchus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.