IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/127954.html
   My bibliography  Save this paper

Minimal contagious sets: degree distributional bounds

Author

Listed:
  • Arieli, Itai
  • Ashkenazi-Golan, Galit
  • Peretz, Ron
  • Tsodikovich, Yevgeny

Abstract

Agents in a network adopt an innovation if a certain fraction of their neighbors has already done so. We study the minimal contagious set size required for a successful innovation adoption by the entire population, and provide upper and lower bounds on it. Since detailed information about the network structure is often unavailable, we study bounds that depend only on the degree distribution of the network – a simple statistic of the network topology. Moreover, as our bounds are robust to small changes in the degree distribution, they also apply to large networks for which the degree distribution can only be approximated. Applying our bounds to growing networks shows that the minimal contagious set size is linear in the number of nodes. Consequently, for outside of knife-edge cases (such as the star-shaped network), contagion cannot be achieved without seeding a significant fraction of the population. This finding highlights the resilience of networks and demonstrates a high penetration cost in the corresponding markets.

Suggested Citation

  • Arieli, Itai & Ashkenazi-Golan, Galit & Peretz, Ron & Tsodikovich, Yevgeny, 2025. "Minimal contagious sets: degree distributional bounds," LSE Research Online Documents on Economics 127954, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:127954
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/127954/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Blume Lawrence E., 1995. "The Statistical Mechanics of Best-Response Strategy Revision," Games and Economic Behavior, Elsevier, vol. 11(2), pages 111-145, November.
    2. Rosenberg, Dinah & Solan, Eilon & Vieille, Nicolas, 2009. "Informational externalities and emergence of consensus," Games and Economic Behavior, Elsevier, vol. 66(2), pages 979-994, July.
    3. Erol, Selman & Parise, Francesca & Teytelboym, Alexander, 2023. "Contagion in graphons," Journal of Economic Theory, Elsevier, vol. 211(C).
    4. Ellison, Glenn, 1993. "Learning, Local Interaction, and Coordination," Econometrica, Econometric Society, vol. 61(5), pages 1047-1071, September.
    5. Ozan Candogan, 2022. "Persuasion in Networks: Public Signals and Cores," Operations Research, INFORMS, vol. 70(4), pages 2264-2298, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Kosfeld, 2002. "Stochastic strategy adjustment in coordination games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 20(2), pages 321-339.
    2. Kosfeld, Michael, 2002. "Why shops close again: An evolutionary perspective on the deregulation of shopping hours," European Economic Review, Elsevier, vol. 46(1), pages 51-72, January.
    3. Hsiao-Chi Chen & Yunshyong Chow & Li-Chau Wu, 2013. "Imitation, local interaction, and coordination," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 1041-1057, November.
    4. Stephen Morris & Hyun Song Shin, 2003. "Heterogeneity and Uniqueness in Interaction Games," Cowles Foundation Discussion Papers 1402, Cowles Foundation for Research in Economics, Yale University.
    5. Suren Basov, 2002. "Evolution of Social Behavior in the Global Economy: The Replicator Dynamics with Migration," Department of Economics - Working Papers Series 847, The University of Melbourne.
    6. López-Pintado, Dunia, 2008. "Diffusion in complex social networks," Games and Economic Behavior, Elsevier, vol. 62(2), pages 573-590, March.
    7. Cowan, Robin, 2004. "Network models of innovation and knowledge diffusion," Research Memorandum 016, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    8. Carlos Alós-Ferrer & Georg Kirchsteiger & Markus Walzl, 2010. "On the Evolution of Market Institutions: The Platform Design Paradox," Economic Journal, Royal Economic Society, vol. 120(543), pages 215-243, March.
    9. Oyama, Daisuke & Takahashi, Satoru, 2015. "Contagion and uninvadability in local interaction games: The bilingual game and general supermodular games," Journal of Economic Theory, Elsevier, vol. 157(C), pages 100-127.
    10. Hellmann, Tim & Staudigl, Mathias, 2014. "Evolution of social networks," European Journal of Operational Research, Elsevier, vol. 234(3), pages 583-596.
    11. Côme Billard, 2020. "Technology Contagion in Networks," Working Papers 2020.01, FAERE - French Association of Environmental and Resource Economists.
    12. Edward Cartwright, 2002. "Learning to play approximate Nash equilibria in games with many players," Levine's Working Paper Archive 506439000000000070, David K. Levine.
    13. Cassar, Alessandra & Rigdon, Mary, 2011. "Trust and trustworthiness in networked exchange," Games and Economic Behavior, Elsevier, vol. 71(2), pages 282-303, March.
    14. Cui, Zhiwei & Wang, Rui, 2016. "Collaboration in networks with randomly chosen agents," Journal of Economic Behavior & Organization, Elsevier, vol. 129(C), pages 129-141.
    15. Kreindler, Gabriel E. & Young, H. Peyton, 2013. "Fast convergence in evolutionary equilibrium selection," Games and Economic Behavior, Elsevier, vol. 80(C), pages 39-67.
    16. Michel Grabisch & Agnieszka Rusinowska & Xavier Venel, 2019. "Diffusion in countably infinite networks," Documents de travail du Centre d'Economie de la Sorbonne 19017, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Bilancini, Ennio & Boncinelli, Leonardo, 2022. "The evolution of conventions in the presence of social competition," Games and Economic Behavior, Elsevier, vol. 133(C), pages 50-57.
    18. Simon Weidenholzer, 2010. "Coordination Games and Local Interactions: A Survey of the Game Theoretic Literature," Games, MDPI, vol. 1(4), pages 1-35, November.
    19. Staudigl, Mathias & Weidenholzer, Simon, 2014. "Constrained interactions and social coordination," Journal of Economic Theory, Elsevier, vol. 152(C), pages 41-63.
    20. Giorgio Fagiolo, 2005. "A Note on Equilibrium Selection in Polya-Urn Coordination Games," Economics Bulletin, AccessEcon, vol. 3(45), pages 1-14.

    More about this item

    Keywords

    innovation; diffusion; word-of-mouth; contagious; attachment;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • M30 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:127954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.