IDEAS home Printed from
   My bibliography  Save this paper

The Statistical Mechanics of Best-Response Strategy Revision


  • Lawrence Blume


I continue the study, begun in Blume (1993), of stochastic strategy revision processes in large player populations where the range of interaction between players is small. Each player interacts directly with only a finite set of neighbors, but any two players indirectly interact through a finite chain of direct interactions. The purpose of this paper is to compare local strategic interaction with global strategic interaction when players update their choice according to the (myopic) best-response rule. I show that randomizing the order in which players update their strategic choice is sufficient to achieve coordination on the risk-dominant strategy in symmetric $2\times 2$ coordination games. The ``persistant randomness'' which is necessary to achieve similar coordination when the range of interaction is global is replaced by spatial variation in choice in the initial condition when strategic interactions are local. An extension of the risk-dominance idea gives the same convergence result for $K\times K$ games with strategic complementarities. Similar results for $K\times K$ pure coordination games and potential games are also presented.

Suggested Citation

  • Lawrence Blume, 1993. "The Statistical Mechanics of Best-Response Strategy Revision," Game Theory and Information 9307001, University Library of Munich, Germany, revised 26 Jan 1994.
  • Handle: RePEc:wpa:wuwpga:9307001
    Note: 29 pages, plain TeX with two tables, all macros included. This new version extends the results of the previous version to games with strategic complementarities and some other K x K games.

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Bergstrom, Theodore C, 1995. "On the Evolution of Altruistic Ethical Rules for Siblings," American Economic Review, American Economic Association, vol. 85(1), pages 58-81, March.
    2. Ellison, Glenn, 1993. "Learning, Local Interaction, and Coordination," Econometrica, Econometric Society, vol. 61(5), pages 1047-1071, September.
    3. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:9307001. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.