IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

The Statistical Mechanics of Best-Response Strategy Revision

  • Lawrence Blume

I continue the study, begun in Blume (1993), of stochastic strategy revision processes in large player populations where the range of interaction between players is small. Each player interacts directly with only a finite set of neighbors, but any two players indirectly interact through a finite chain of direct interactions. The purpose of this paper is to compare local strategic interaction with global strategic interaction when players update their choice according to the (myopic) best-response rule. I show that randomizing the order in which players update their strategic choice is sufficient to achieve coordination on the risk-dominant strategy in symmetric $2\times 2$ coordination games. The ``persistant randomness'' which is necessary to achieve similar coordination when the range of interaction is global is replaced by spatial variation in choice in the initial condition when strategic interactions are local. An extension of the risk-dominance idea gives the same convergence result for $K\times K$ games with strategic complementarities. Similar results for $K\times K$ pure coordination games and potential games are also presented.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

File URL:
Download Restriction: no

Paper provided by EconWPA in its series Game Theory and Information with number 9307001.

in new window

Length: 29 pages
Date of creation: 21 Jul 1993
Date of revision: 26 Jan 1994
Handle: RePEc:wpa:wuwpga:9307001
Note: 29 pages, plain TeX with two tables, all macros included. This new version extends the results of the previous version to games with strategic complementarities and some other K x K games.
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Theodore C. Bergstrom, . "On the Evolution of Altruistic Ethical Rules for Siblings," ELSE working papers 017, ESRC Centre on Economics Learning and Social Evolution.
  2. Ellison, Glenn, 1993. "Learning, Local Interaction, and Coordination," Econometrica, Econometric Society, vol. 61(5), pages 1047-71, September.
  3. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:9307001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.