IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp823.html
   My bibliography  Save this paper

Perspectives of the European Natural Gas Markets until 2025

Author

Listed:
  • Franziska Holz
  • Christian von Hirschhausen
  • Claudia Kemfert

Abstract

We apply the EMF 23 study design to simulate the effects of the reference case and the scenarios to European natural gas supplies to 2025. We use GASMOD, a strategic severallayer model of European gas supply, consisting of upstream natural gas producers, traders in each consuming European country (or region), and final demand. Our model results suggest rather modest changes in the overall supply situation of natural gas to Europe, indicating that current worries about energy supply security issues may be overrated. LNG will likely increase its share of European natural gas imports in the future, Russia will not dominate the European imports (~ share of 1/3), the Middle East will continue to be a rather modest supplier, the UK is successfully converting from being a natural gas exporter to become a transit node for LNG towards continental Europe, and congested pipeline infrastructure, and in some cases LNG terminals, will remain a feature of the European gas markets, but less than in the current situation.

Suggested Citation

  • Franziska Holz & Christian von Hirschhausen & Claudia Kemfert, 2008. "Perspectives of the European Natural Gas Markets until 2025," Discussion Papers of DIW Berlin 823, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp823
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.89229.de/dp823.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Egging, Ruud & Gabriel, Steven A. & Holz, Franziska & Zhuang, Jifang, 2008. "A complementarity model for the European natural gas market," Energy Policy, Elsevier, vol. 36(7), pages 2385-2414, July.
    2. Holz, Franziska & von Hirschhausen, Christian & Kemfert, Claudia, 2008. "A strategic model of European gas supply (GASMOD)," Energy Economics, Elsevier, vol. 30(3), pages 766-788, May.
    3. Maroeska G. Boots, Fieke A.M. Rijkers and Benjamin F. Hobbs, 2004. "Trading in the Downstream European Gas Market: A Successive Oligopoly Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-102.
    4. SMEERS, Yves, 2008. "Gas models and three difficult objectives," LIDAM Discussion Papers CORE 2008009, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Egging, Rudolf G. & Gabriel, Steven A., 2006. "Examining market power in the European natural gas market," Energy Policy, Elsevier, vol. 34(17), pages 2762-2778, November.
    6. Ferris, Michael C. & Munson, Todd S., 2000. "Complementarity problems in GAMS and the PATH solver," Journal of Economic Dynamics and Control, Elsevier, vol. 24(2), pages 165-188, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lochner, Stefan & Dieckhöner, Caroline, 2012. "Civil unrest in North Africa—Risks for natural gas supply?," Energy Policy, Elsevier, vol. 45(C), pages 167-175.
    2. Mingjing Guo & Yan Bu & Jinhua Cheng & Ziyu Jiang, 2018. "Natural Gas Security in China: A Simulation of Evolutionary Trajectory and Obstacle Degree Analysis," Sustainability, MDPI, vol. 11(1), pages 1-18, December.
    3. Dieckhöner, Caroline & Lochner, Stefan & Lindenberger, Dietmar, 2013. "European natural gas infrastructure: The impact of market developments on gas flows and physical market integration," Applied Energy, Elsevier, vol. 102(C), pages 994-1003.
    4. Axel M. Wietfeld, 2011. "Understanding Middle East Gas Exporting Behavior," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 203-228.
    5. Kristine Grimsrud, Knut Einar Rosendahl, Halvor B. Storrøsten, and Marina Tsygankova, 2016. "Short Run Effects of Bleaker Prospects for Oligopolistic Producers of a Non-renewable Resource," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    6. Youngho Chang & Dang Thi Quynh Trang & Tsiat Siong Tan & Farhad Taghizadeh-Hesary, 2021. "Competition and cooperation in the natural gas market: a game-theoretic demand-base analysis," Asia Europe Journal, Springer, vol. 19(1), pages 21-49, December.
    7. Jia, Weidong & Gong, Chengzhu & Pan, Kai & Yu, Shiwei, 2023. "Potential changes of regional natural gas market in China amidst liberalization: A mixed complementarity equilibrium simulation in 2030," Energy, Elsevier, vol. 284(C).
    8. Brandão, António & Soares, Isabel & Sarmento, Paula & Resende, Joana & Pinho, Joana, 2014. "Regulating international gas transport: Welfare effects of postage stamp and entry–exit systems," Energy, Elsevier, vol. 69(C), pages 86-95.
    9. Bigerna, Simona & Ceccacci, Francesca & Micheli, Silvia & Polinori, Paolo, 2023. "Between saying and doing for ensuring energy resources supply: The case of Italy in time of crisis," Resources Policy, Elsevier, vol. 85(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chyong, Chi Kong & Hobbs, Benjamin F., 2014. "Strategic Eurasian natural gas market model for energy security and policy analysis: Formulation and application to South Stream," Energy Economics, Elsevier, vol. 44(C), pages 198-211.
    2. Ibrahim Abada & Steven Gabriel & Vincent Briat & Olivier Massol, 2013. "A Generalized Nash–Cournot Model for the Northwestern European Natural Gas Markets with a Fuel Substitution Demand Function: The GaMMES Model," Networks and Spatial Economics, Springer, vol. 13(1), pages 1-42, March.
    3. Jia, Weidong & Gong, Chengzhu & Pan, Kai & Yu, Shiwei, 2023. "Potential changes of regional natural gas market in China amidst liberalization: A mixed complementarity equilibrium simulation in 2030," Energy, Elsevier, vol. 284(C).
    4. Gong, Chengzhu & Wu, Desheng & Gong, Nianjiao & Qi, Rui, 2020. "Multi-agent mixed complementary simulation of natural gas upstream market liberalization in China," Energy, Elsevier, vol. 200(C).
    5. Egging-Bratseth, Ruud & Baltensperger, Tobias & Tomasgard, Asgeir, 2020. "Solving oligopolistic equilibrium problems with convex optimization," European Journal of Operational Research, Elsevier, vol. 284(1), pages 44-52.
    6. Holz, Franziska & Richter, Philipp M. & Egging, Ruud, 2016. "The Role of Natural Gas in a Low-Carbon Europe: Infrastructure and Supply Security," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37(SI37), pages 33-59.
    7. Foster, John & Wagner, Liam & Liebman, Ariel, 2015. "Modelling the Electricity and Natural Gas Sectors for the Future Grid: Developing Co-Optimisation Platforms for Market Redesign," MPRA Paper 70114, University Library of Munich, Germany.
    8. Franziska Holz & Philipp M. Richter & Ruud Egging, 2013. "The Role of Natural Gas in a Low-Carbon Europe: Infrastructure and Regional Supply Security in the Global Gas Model," Discussion Papers of DIW Berlin 1273, DIW Berlin, German Institute for Economic Research.
    9. Tóth, Borbála Takácsné & Kotek, Péter & Selei, Adrienn, 2020. "Rerouting Europe's gas transit landscape - Effects of Russian natural gas infrastructure strategy on the V4," Energy Policy, Elsevier, vol. 146(C).
    10. Egging, Ruud & Pichler, Alois & Kalvø, Øyvind Iversen & Walle–Hansen, Thomas Meyer, 2017. "Risk aversion in imperfect natural gas markets," European Journal of Operational Research, Elsevier, vol. 259(1), pages 367-383.
    11. Gijsbert T.J. Zwart, 2009. "European Natural Gas Markets: Resource Constraints and Market Power," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 151-166.
    12. Hubert, Franz & Orlova, Ekaterina, 2018. "Network access and market power," Energy Economics, Elsevier, vol. 76(C), pages 170-185.
    13. Ibrahim Abada, 2012. "A stochastic generalized Nash-Cournot model for the northwestern European natural gas markets with a fuel substitution demand function: The S-GaMMES model," Working Papers 1202, Chaire Economie du climat.
    14. Adrienn Selei & Borbála Tóth & Gustav Resch & László Szabó & Lukas Liebmann & Péter Kaderják, 2017. "How far is mitigation of Russian gas dependency possible through energy efficiency and renewable policies assuming different gas market structures?," Energy & Environment, , vol. 28(1-2), pages 54-69, March.
    15. Möst, Dominik & Perlwitz, Holger, 2009. "Prospects of gas supply until 2020 in Europe and its relevance for the power sector in the context of emission trading," Energy, Elsevier, vol. 34(10), pages 1510-1522.
    16. Veronika Grimm & Lars Schewe & Martin Schmidt & Gregor Zöttl, 2019. "A multilevel model of the European entry-exit gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 223-255, April.
    17. Gijsbert Zwart & S. Ikonnikova, 2010. "Reinforcing buyer power: Trade quotas and supply diversification in the EU natural gas market," CPB Discussion Paper 147, CPB Netherlands Bureau for Economic Policy Analysis.
    18. Guo, Yingjian & Hawkes, Adam, 2019. "Asset stranding in natural gas export facilities: An agent-based simulation," Energy Policy, Elsevier, vol. 132(C), pages 132-155.
    19. Böttger, T. & Grimm, V. & Kleinert, T. & Schmidt, M., 2022. "The cost of decoupling trade and transport in the European entry-exit gas market with linear physics modeling," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1095-1111.
    20. Christian Growitsch & Harald Hecking & Timo Panke, 2014. "Supply Disruptions and Regional Price Effects in a Spatial Oligopoly—An Application to the Global Gas Market," Review of International Economics, Wiley Blackwell, vol. 22(5), pages 944-975, November.

    More about this item

    Keywords

    Natural gas; Europe; modeling; LNG; supply security;
    All these keywords.

    JEL classification:

    • L95 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Gas Utilities; Pipelines; Water Utilities
    • L13 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Oligopoly and Other Imperfect Markets
    • F14 - International Economics - - Trade - - - Empirical Studies of Trade

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.