IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/99s-12.html
   My bibliography  Save this paper

Using Employee Level Data in a Firm Level Econometric Study

Author

Listed:
  • Nathalie Greenan
  • Jacques Mairesse

Abstract

In this paper, we make the general point that econometric studies of the firm can be effectively and substantially enriched by using information collected from employees, even if only a few of them are surveyed per firm. Though variables measured on the basis of the answers of very few employees per firm are subject to very important sampling errors, they can be usefully included in a model specified at the firm level. In the first part of the paper, we show that in estimating parameters of interest in a regression model of the firm, the biases arising from the sampling errors in the employee based variables can be assessed, as long as we have a large enough sub-sample of firms with at least two or with more (randomly chosen) surveyed employees. Dans cet article, nous mettons en avant et argumentons l'idée suivant laquelle les études économétriques sur les entreprises peuvent être efficacement et substantiellement enrichies à l'aide d'informations obtenues aupres de leurs employés, même si seuls quelques-uns par entreprise, deux ou trois par exemple, sont interrogés. Alors même que les variables mesurées à partir des réponses d'un très petit nombre d'employés par entreprise sont sujettes à d'importantes erreurs d'échantillonnage, elles peuvent être utilement incorporées dans un modèle économétrique spécifié au niveau de l'entreprise. Dans une première partie de l'article, nous montrons, pour un modèle de régression linéaire, que les biais d'estimation sur les paramètres d'intérêt qui proviennent de telles erreurs d'échantillonnage, peuvent être corrigés, si on dispose au minimum d'un sous-échantillon (suffisamment grand) d'entreprises où on a pu interroger, au moins, deux employés choisis au hasard. Dans la deuxième partie de l'article, nous considérons, à titre d'exemple, l'estimation de la relation entre le salaire moyen des entreprises (connu directement à partir de leurs données comptables) et la proportion de leurs employés de sexe féminin, telle qu'elle peut être elle-même estimée à partir du sexe de un, deux ou trois salariés choisis au hasard par entreprise. En guise de test, nous comparons les estimations établies sur cette base avec celles obtenues sur la base de la vraie proportion d'employés de sexe féminin (c'est à dire la proportion pour tous les employés), que nous pouvons connaitre aussi, par ailleurs, directement auprès des entreprises. Cette analyse est effectuée sur deux échantillons appariés entreprises-salariés, relatifs à environ 2500 entreprises, en 1987 et 1993, pour l'industrie et les services en France, entreprises où un, deux et trois employés ont été interrogés pour respectivement 75 %, 15 % et 10 % d'entre elles.

Suggested Citation

  • Nathalie Greenan & Jacques Mairesse, 1999. "Using Employee Level Data in a Firm Level Econometric Study," CIRANO Working Papers 99s-12, CIRANO.
  • Handle: RePEc:cir:cirwor:99s-12
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/99s-12.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zvi Griliches & Jacques Mairesse, 1995. "Production Functions: The Search for Identification," NBER Working Papers 5067, National Bureau of Economic Research, Inc.
    2. Nathalie Greenana & Jacques Mairesse, 2000. "Computers And Productivity In France: Some Evidence," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 9(3), pages 275-315.
    3. David Card & Thomas Lemieux, 1993. "Wage Dispersion, Returns to Skill, and Black-White Wage Differentials," Working Papers 691, Princeton University, Department of Economics, Industrial Relations Section..
    4. Card, David & Lemieux, Thomas, 1996. "Wage dispersion, returns to skill, and black-white wage differentials," Journal of Econometrics, Elsevier, vol. 74(2), pages 319-361, October.
    5. Torbjorn Hacgeland & Tor Jakob Klette, 1999. "Do Higher Wages Reflect Higher Productivity? Education, Gender and Experience Premiums in a Matched Plant-Worker Data Set," Contributions to Economic Analysis, in: The Creation and Analysis of Employer-Employee Matched Data, pages 231-259, Emerald Group Publishing Limited.
    6. Deaton, Angus, 1985. "Panel data from time series of cross-sections," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 109-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathalie Greenan & Edward Lorenz & Stephen Allan & Thomas Amossé & Daniele Archiburgi & Anthony Arundel & Eva Bejerot & Lutz Bellmann & Sophie Bressé & Adam Coutts & Peter Csizmadia & Peter Ester & Jo, 2010. "The MEADOW Guidelines," Post-Print halshs-01362486, HAL.
    2. Nis Lydiksen & Andreas Gotfredsen & Jacob Ladenburg & Helle Stenbro, 2023. "Job satisfaction and firm earnings—Evidence from matched survey and register data," LABOUR, CEIS, vol. 37(2), pages 197-221, June.
    3. Christophe J. NORDMAN & François-Charles WOLFF, 2012. "On-The-Job Learning And Earnings: Comparative Evidence From Morocco And Senegal," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 35, pages 151-176.
    4. repec:dau:papers:123456789/4333 is not listed on IDEAS
    5. Judith K. Hellerstein & David Neumark, 2003. "Ethnicity, Language, and Workplace Segregation: Evidence from a New Matched Employer-Employee Data Set," Annals of Economics and Statistics, GENES, issue 71-72, pages 1-15.
    6. Petri Böckerman & Pekka Ilmakunnas, 2012. "The Job Satisfaction-Productivity Nexus: A Study Using Matched Survey and Register Data," ILR Review, Cornell University, ILR School, vol. 65(2), pages 244-262, April.
    7. Erling Barth & James C. Davis & Richard B. Freeman & Andrew J. Wang, 2018. "The Effects of Scientists and Engineers on Productivity and Earnings at the Establishment Where They Work," NBER Chapters, in: US Engineering in a Global Economy, pages 167-191, National Bureau of Economic Research, Inc.
    8. Christophe J. Nordman & François-Charles Wolff, 2009. "Is There a Glass Ceiling in Morocco? Evidence from Matched Worker--Firm Data," Journal of African Economies, Centre for the Study of African Economies, vol. 18(4), pages 592-633, August.
    9. Devereux, Paul J., 2007. "Improved Errors-in-Variables Estimators for Grouped Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 278-287, July.
    10. Christophe Nordman & François-Charles Wolff, 2007. "On-the-job learning and earnings in Benin, Morocco and Senegal," Working Papers DT/2007/09, DIAL (Développement, Institutions et Mondialisation).
    11. Stepan Jurajda & Heike Harmgart, 2002. "Sex Segregation and Wage Gaps in East and West Germany," CERGE-EI Working Papers wp202, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    12. repec:dau:papers:123456789/4344 is not listed on IDEAS
    13. Barth, Erling & Bryson, Alex & Davis, James C. & Freeman, Richard B., 2014. "It's Where You Work: Increases in Earnings Dispersion across Establishments and Individuals in the U.S," IZA Discussion Papers 8437, Institute of Labor Economics (IZA).
    14. Petri, Böckerman & Pekka, Ilmakunnas, 2020. "Työhyvinvointi kannattaa. Työolot, työtyytyväisyys ja tuottavuus [Working conditions, job satisfaction and productivity]," MPRA Paper 103484, University Library of Munich, Germany.
    15. Nathalie Greenan & Jacques Mairesse, 2006. "Les changements organisationnels, l'informatisation des entreprises et le travail des salariés. Un exercice de mesure à partir de données couplées entreprises/salariés," Revue économique, Presses de Sciences-Po, vol. 57(6), pages 1137-1175.
    16. Nathalie Greenan & Jacques Mairesse, 2006. "Un équipement de recherche pour observer et analyser les réorganisations d'entreprises," Revue économique, Presses de Sciences-Po, vol. 57(6), pages 1121-1135.
    17. Tilahun Temesgen, 2006. "Decomposing Gender Wage Differentials in Urban Ethiopia: Evidence from Linked Employer-Employee (LEE) Manufacturing Survey Data," Global Economic Review, Taylor & Francis Journals, vol. 35(1), pages 43-66.
    18. repec:dau:papers:123456789/5948 is not listed on IDEAS
    19. Christophe J. Nordman & François-Charles Wolff, 2009. "Gender differences in pay in African manufacturing firms," Working Papers hal-00421227, HAL.
    20. repec:eee:labchp:v:3:y:1999:i:pb:p:2629-2710 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diane J. Macunovich, 1999. "The fortunes of one's birth: Relative cohort size and the youth labor market in the United States," Journal of Population Economics, Springer;European Society for Population Economics, vol. 12(2), pages 215-272.
    2. Chay, Kenneth Y. & Lee, David S., 2000. "Changes in relative wages in the 1980s Returns to observed and unobserved skills and black-white wage differentials," Journal of Econometrics, Elsevier, vol. 99(1), pages 1-38, November.
    3. Devereux, Paul J., 2007. "Improved Errors-in-Variables Estimators for Grouped Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 278-287, July.
    4. Franzini, Maurizio & Raitano, Michele, 2019. "Earnings inequality and workers’ skills in Italy," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 215-224.
    5. Muller, Christophe, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
    6. Burgess, Simon & Lane, Julia & Stevens, David, 1997. "Jobs, Workers and Changes in Earnings Dispersion," CEPR Discussion Papers 1714, C.E.P.R. Discussion Papers.
    7. Takagi, Shingo, 1999. "Bias in maximum likelihood estimator of disequilibrium and sample selection model with error-ridden observations," Economics Letters, Elsevier, vol. 64(2), pages 161-165, August.
    8. Abowd, J.M. & Kramarz, F. & Margolis, D.N., 1998. "Minimum Wages and Employment in France and the United States," Papiers du Laboratoire de Microéconomie Appliquée 1998-12, Université Panthéon-Sorbonne (Paris 1).
    9. John S. Heywood & Daniel Parent, 2012. "Performance Pay and the White-Black Wage Gap," Journal of Labor Economics, University of Chicago Press, vol. 30(2), pages 249-290.
    10. Benoit Dostie, 2011. "Wages, Productivity and Aging," De Economist, Springer, vol. 159(2), pages 139-158, June.
    11. Solomon Polachek, 2003. "Mincer's Overtaking Point and the Life Cycle Earnings Distribution," Review of Economics of the Household, Springer, vol. 1(4), pages 273-304, December.
    12. Gawai, Vikas PD & Foltz, Jeremy D., 2023. "Discrimination in Science: Salaries of Foreign and US Born Land-Grant University Scientists," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322134, Agricultural and Applied Economics Association.
    13. Esfandiar Maasoumi & Almas Heshmati, 2000. "Stochastic dominance amongst swedish income distributions," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 287-320.
    14. Spyros Arvanitis & Juliette von Arx, 2004. "Bestimmungsfaktoren der Innovationstätigkeit und deren Einfluss auf Arbeitsproduktivität, Beschäftigung und Qualifikationsstruktur," KOF Working papers 04-91, KOF Swiss Economic Institute, ETH Zurich.
    15. Teulings, Coen N, 1995. "The Wage Distribution in a Model of the Assignment of Skills to Jobs," Journal of Political Economy, University of Chicago Press, vol. 103(2), pages 280-315, April.
    16. Audra J. Bowlus & Chris Robinson, 2004. "Technological Change in the Production of Human Capital: Implications for Human Capital Stocks, Wages and Skill Differentials," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20041, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
    17. Maarten Goos & Alan Manning, 2007. "Lousy and Lovely Jobs: The Rising Polarization of Work in Britain," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 118-133, February.
    18. Walter Simmons & Rosemarie Emanuele, 2004. "Male and Female Recoveries in Medical Malpractice Cases," Review of Social Economy, Taylor & Francis Journals, vol. 62(1), pages 83-99.
    19. Teulings, Coen N, 2000. "Aggregation Bias in Elasticities of Substitution and the Minimum Wage Paradox," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(2), pages 359-398, May.
    20. Blanchard, Emily & Willmann, Gerald, 2016. "Trade, education, and the shrinking middle class," Journal of International Economics, Elsevier, vol. 99(C), pages 263-278.

    More about this item

    Keywords

    Linked employer-employee data; errors in variables; pseudo-panel; wage gender differentials; Données appariées entreprises-salariés; modèles à erreurs sur les variables; pseudo-panels; écarts salariaux hommes-femmes.;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:99s-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.