IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/99s-12.html
   My bibliography  Save this paper

Using Employee Level Data in a Firm Level Econometric Study

Author

Listed:
  • Nathalie Greenan
  • Jacques Mairesse

Abstract

In this paper, we make the general point that econometric studies of the firm can be effectively and substantially enriched by using information collected from employees, even if only a few of them are surveyed per firm. Though variables measured on the basis of the answers of very few employees per firm are subject to very important sampling errors, they can be usefully included in a model specified at the firm level. In the first part of the paper, we show that in estimating parameters of interest in a regression model of the firm, the biases arising from the sampling errors in the employee based variables can be assessed, as long as we have a large enough sub-sample of firms with at least two or with more (randomly chosen) surveyed employees. Dans cet article, nous mettons en avant et argumentons l'idée suivant laquelle les études économétriques sur les entreprises peuvent être efficacement et substantiellement enrichies à l'aide d'informations obtenues aupres de leurs employés, même si seuls quelques-uns par entreprise, deux ou trois par exemple, sont interrogés. Alors même que les variables mesurées à partir des réponses d'un très petit nombre d'employés par entreprise sont sujettes à d'importantes erreurs d'échantillonnage, elles peuvent être utilement incorporées dans un modèle économétrique spécifié au niveau de l'entreprise. Dans une première partie de l'article, nous montrons, pour un modèle de régression linéaire, que les biais d'estimation sur les paramètres d'intérêt qui proviennent de telles erreurs d'échantillonnage, peuvent être corrigés, si on dispose au minimum d'un sous-échantillon (suffisamment grand) d'entreprises où on a pu interroger, au moins, deux employés choisis au hasard. Dans la deuxième partie de l'article, nous considérons, à titre d'exemple, l'estimation de la relation entre le salaire moyen des entreprises (connu directement à partir de leurs données comptables) et la proportion de leurs employés de sexe féminin, telle qu'elle peut être elle-même estimée à partir du sexe de un, deux ou trois salariés choisis au hasard par entreprise. En guise de test, nous comparons les estimations établies sur cette base avec celles obtenues sur la base de la vraie proportion d'employés de sexe féminin (c'est à dire la proportion pour tous les employés), que nous pouvons connaitre aussi, par ailleurs, directement auprès des entreprises. Cette analyse est effectuée sur deux échantillons appariés entreprises-salariés, relatifs à environ 2500 entreprises, en 1987 et 1993, pour l'industrie et les services en France, entreprises où un, deux et trois employés ont été interrogés pour respectivement 75 %, 15 % et 10 % d'entre elles.

Suggested Citation

  • Nathalie Greenan & Jacques Mairesse, 1999. "Using Employee Level Data in a Firm Level Econometric Study," CIRANO Working Papers 99s-12, CIRANO.
  • Handle: RePEc:cir:cirwor:99s-12
    as

    Download full text from publisher

    File URL: http://www.cirano.qc.ca/files/publications/99s-12.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zvi Griliches & Jacques Mairesse, 1995. "Production Functions: The Search for Identification," NBER Working Papers 5067, National Bureau of Economic Research, Inc.
    2. Card, David & Lemieux, Thomas, 1996. "Wage dispersion, returns to skill, and black-white wage differentials," Journal of Econometrics, Elsevier, vol. 74(2), pages 319-361, October.
    3. Nathalie Greenana & Jacques Mairesse, 2000. "Computers And Productivity In France: Some Evidence," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 9(3), pages 275-315.
    4. Deaton, Angus, 1985. "Panel data from time series of cross-sections," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 109-126.
    5. Torbjørn Hægeland & Tor Jakob Klette, 1997. "Do Higher Wages Reflect Higher Productivity? Education, Gender and Experience Premiums in a Matched Plant-Worker Data Set," Discussion Papers 208, Statistics Norway, Research Department.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petri Böckerman & Pekka Ilmakunnas, 2012. "The Job Satisfaction-Productivity Nexus: A Study Using Matched Survey and Register Data," ILR Review, Cornell University, ILR School, vol. 65(2), pages 244-262, April.
    2. Christophe J. NORDMAN & François-Charles WOLFF, 2012. "On-The-Job Learning And Earnings: Comparative Evidence From Morocco And Senegal," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 35, pages 151-176.
    3. Nathalie Greenan & Jacques Mairesse, 2006. "Les changements organisationnels, l'informatisation des entreprises et le travail des salariés. Un exercice de mesure à partir de données couplées entreprises/salariés," Revue économique, Presses de Sciences-Po, vol. 57(6), pages 1137-1175.
    4. repec:dau:papers:123456789/4333 is not listed on IDEAS
    5. Judith K. Hellerstein & David Neumark, 2003. "Ethnicity, Language, and Workplace Segregation: Evidence from a New Matched Employer-Employee Data Set," Annals of Economics and Statistics, GENES, issue 71-72, pages 1-15.
    6. Nathalie Greenan & Jacques Mairesse, 2006. "Un équipement de recherche pour observer et analyser les réorganisations d'entreprises," Revue économique, Presses de Sciences-Po, vol. 57(6), pages 1121-1135.
    7. Tilahun Temesgen, 2006. "Decomposing Gender Wage Differentials in Urban Ethiopia: Evidence from Linked Employer-Employee (LEE) Manufacturing Survey Data," Global Economic Review, Taylor & Francis Journals, vol. 35(1), pages 43-66.
    8. Christophe J. Nordman & François-Charles Wolff, 2009. "Is There a Glass Ceiling in Morocco? Evidence from Matched Worker--Firm Data," Journal of African Economies, Centre for the Study of African Economies (CSAE), vol. 18(4), pages 592-633, August.
    9. Devereux, Paul J., 2007. "Improved Errors-in-Variables Estimators for Grouped Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 278-287, July.
    10. repec:dau:papers:123456789/5948 is not listed on IDEAS
    11. Christophe Nordman & François-Charles Wolff, 2007. "On-the-job learning and earnings in Benin, Morocco and Senegal," Working Papers DT/2007/09, DIAL (Développement, Institutions et Mondialisation).
    12. Stepan Jurajda & Heike Harmgart, 2002. "Sex Segregation and Wage Gaps in East and West Germany," CERGE-EI Working Papers wp202, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    13. Christophe J. Nordman & François-Charles Wolff, 2009. "Gender differences in pay in African manufacturing firms," Working Papers hal-00421227, HAL.
    14. Alex Bryson, 2014. "It's Where You Work: Increases in Earnings Dispersion across Establishments and Individuals in the U.S," National Institute of Economic and Social Research (NIESR) Discussion Papers 436, National Institute of Economic and Social Research.
    15. repec:dau:papers:123456789/4344 is not listed on IDEAS
    16. repec:eee:labchp:v:3:y:1999:i:pb:p:2629-2710 is not listed on IDEAS

    More about this item

    Keywords

    Linked employer-employee data; errors in variables; pseudo-panel; wage gender differentials; Données appariées entreprises-salariés; modèles à erreurs sur les variables; pseudo-panels; écarts salariaux hommes-femmes.;

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:99s-12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: http://edirc.repec.org/data/ciranca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.