IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Empirical Distributions of Log-Returns: between the Stretched Exponential and the Power Law?

  • Y. Malevergne

    (Univ. Nice and Univ. Lyon)

  • V. F. Pisarenko

    (Russian Acad. Sci.)

  • D. Sornette

    (UCLA and CNRS-Univ. Nice)

A large consensus now seems to take for granted that the distributions of empirical returns of financial time series are regularly varying, with a tail exponent close to 3. We revisit this results and use standard tests as well as develop a battery of new non-parametric and parametric tests (in particular with stretched exponential (SE) distributions) to characterize the distributions of empirical returns of financial time series, with application to the 100 years of daily return of the Dow Jones Industrial Average and over 1 years of 5-minutes returns of the Nasdaq Composite index. Based on the discovery that the SE distribution tends to the Pareto distribution in a certain limit such that the Pareto (or power law) distribution can be approximated with any desired accuracy on an arbitrary interval by a suitable adjustment of the parameters of the SE distribution, we demonstrate that Wilks' test of nested hypothesis still works for the non-exactly nested comparison between the SE and Pareto distributions. The SE distribution is found significantly better over the whole quantile range but becomes unnecessary beyond the 95% quantiles compared with the Pareto law. Similar conclusions hold for the log-Weibull model with respect to the Pareto distribution. Our main result is that the tails ultimately decay slower than any stretched exponential distribution but probably faster than power laws with reasonable exponents. Implications of our results on the ``moment condition failure'' and for risk estimation and management are presented.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/physics/0305089
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number physics/0305089.

as
in new window

Length:
Date of creation: May 2003
Date of revision:
Publication status: Published in divided in two: Quantitative Finance 5 (4), 379-401 (2005) and Applied Financial Economics 16, 271-289 (2006)
Handle: RePEc:arx:papers:physics/0305089
Contact details of provider: Web page: http://arxiv.org/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
  2. Hwang, S. & Satchell, S. E., 1998. "Modelling Emerging Market Risk Premia using Higher Moments," Cambridge Working Papers in Economics 9806, Faculty of Economics, University of Cambridge.
  3. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  4. Lux, Thomas & Sornette, Didier, 2002. "On Rational Bubbles and Fat Tails," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(3), pages 589-610, August.
  5. ROCKINGER, Michael & JONDEAU, Eric, 2001. "Testing for differences in the tails of stock-market returns," Les Cahiers de Recherche 739, HEC Paris.
  6. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-80, April.
  7. J. Doyne Farmer, 1999. "Physicists Attempt to Scale the Ivory Towers of Finance," Working Papers 99-10-073, Santa Fe Institute.
  8. Ofer Biham & Zhi-Feng Huang & Ofer Malcai & Sorin Solomon, 2002. "Long-Time Fluctuations in a Dynamical Model of Stock Market Indices," Papers cond-mat/0208464, arXiv.org.
  9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  10. Engle, Robert F., 1984. "Wald, likelihood ratio, and Lagrange multiplier tests in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 13, pages 775-826 Elsevier.
  11. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B - Condensed Matter and Complex Systems, Springer, vol. 3(2), pages 139-140, July.
  12. J-F. Muzy & D. Sornette & J. delour & A. Arneodo, 2001. "Multifractal returns and hierarchical portfolio theory," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 131-148.
  13. Sornette, Didier, 1998. "Linear stochastic dynamics with nonlinear fractal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 250(1), pages 295-314.
  14. Andersson, Michael K. & Eklund, Bruno & Lyhagen, Johan, 1999. "A Simple Linear Time Series Model with Misleading Nonlinear Properties," SSE/EFI Working Paper Series in Economics and Finance 300, Stockholm School of Economics.
  15. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
  16. Phillip Kearns & Adrian Pagan, 1997. "Estimating The Density Tail Index For Financial Time Series," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 171-175, May.
  17. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Papers cond-mat/9705087, arXiv.org.
  18. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
  19. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
  20. Xavier Gabaix, 1999. "Zipf'S Law For Cities: An Explanation," The Quarterly Journal of Economics, MIT Press, vol. 114(3), pages 739-767, August.
  21. Y. Malevergne & D. Sornette, 2002. "Multi-Moments Method for Portfolio Management: Generalized Capital Asset Pricing Model in Homogeneous and Heterogeneous markets," Papers cond-mat/0207475, arXiv.org.
  22. Rubinstein, Mark E., 1973. "The Fundamental Theorem of Parameter-Preference Security Valuation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(01), pages 61-69, January.
  23. Michel M. Dacorogna, & Ulrich A. Muller & Olivier V. Pictet & Casper De Vries,, . "The Distribution of Extremal Foreign Exchange Rate Returns in Extremely Large Data Sets," Working Papers 1992-10-22, Olsen and Associates.
  24. Y. Malevergne & D. Sornette, 2001. "Multi-dimensional rational bubbles and fat tails," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 533-541.
  25. Damien Challet & Matteo Marsili, 2002. "Criticality and finite size effects in a simple realistic model of stock market," Papers cond-mat/0210549, arXiv.org, revised Dec 2002.
  26. Fama, Eugene F & French, Kenneth R, 1996. " Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
  27. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
  28. Ramchand, Latha & Susmel, Raul, 1998. "Volatility and cross correlation across major stock markets," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 397-416, October.
  29. Richard B. Olsen & Ulrich A. Müller & Michel M. Dacorogna & Olivier V. Pictet & Rakhal R. Davé & Dominique M. Guillaume, 1997. "From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 95-129.
  30. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0305089. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.