IDEAS home Printed from https://ideas.repec.org/p/arx/papers/physics-0403075.html
   My bibliography  Save this paper

New statistic for financial return distributions: power-law or exponential?

Author

Listed:
  • V. F. Pisarenko

    (Russian Acad. Sci.)

  • D. Sornette

    (UCLA and CNRS-Univ. Nice)

Abstract

We introduce a new statistical tool (the TP-statistic and TE-statistic) designed specifically to compare the behavior of the sample tail of distributions with power-law and exponential tails as a function of the lower threshold u. One important property of these statistics is that they converge to zero for power laws or for exponentials correspondingly, regardless of the value of the exponent or of the form parameter. This is particularly useful for testing the structure of a distribution (power law or not, exponential or not) independently of the possibility of quantifying the values of the parameters. We apply these statistics to the distribution of returns of one century of daily data for the Dow Jones Industrial Average and over one year of 5-minutes data of the Nasdaq Composite index. Our analysis confirms previous works showing the tendency for the tails to resemble more and more a power law for the highest quantiles but we can detect clear deviations that suggest that the structure of the tails of the distributions of returns is more complex than usually assumed; it is clearly more complex that just a power law.

Suggested Citation

  • V. F. Pisarenko & D. Sornette, 2004. "New statistic for financial return distributions: power-law or exponential?," Papers physics/0403075, arXiv.org.
  • Handle: RePEc:arx:papers:physics/0403075
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/physics/0403075
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. Silvapulle & C. W. J. Granger, 2001. "Large returns, conditional correlation and portfolio diversification: a value-at-risk approach," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 542-551.
    2. Mizuno, Takayuki & Kurihara, Shoko & Takayasu, Misako & Takayasu, Hideki, 2003. "Analysis of high-resolution foreign exchange data of USD-JPY for 13 years," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 296-302.
    3. Carmela Quintos & Zhenhong Fan & Peter C. B. Phillips, 2001. "Structural Change Tests in Tail Behaviour and the Asian Crisis," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(3), pages 633-663.
    4. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    5. Y. Malevergne & V. F. Pisarenko & D. Sornette, 2003. "Empirical Distributions of Log-Returns: between the Stretched Exponential and the Power Law?," Papers physics/0305089, arXiv.org.
    6. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    7. Y. Malevergne & V. Pisarenko & D. Sornette, 2006. "On the power of generalized extreme value (GEV) and generalized Pareto distribution (GPD) estimators for empirical distributions of stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(3), pages 271-289.
    8. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical distributions of Chinese stock returns at different microscopic timescales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 495-502.
    2. Pisarenko, V. & Sornette, D., 2006. "New statistic for financial return distributions: Power-law or exponential?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 387-400.
    3. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2021. "Financial Return Distributions: Past, Present, and COVID-19," Papers 2107.06659, arXiv.org.
    4. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    5. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    6. Tetsuya Takaishi, 2016. "Dynamical cross-correlation of multiple time series Ising model," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 455-468, December.
    7. Bucsa, G. & Jovanovic, F. & Schinckus, C., 2011. "A unified model for price return distributions used in econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3435-3443.
    8. Taleb, Nassim Nicholas, 2009. "Errors, robustness, and the fourth quadrant," International Journal of Forecasting, Elsevier, vol. 25(4), pages 744-759, October.
    9. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Stanley, H.Eugene, 2003. "Understanding the cubic and half-cubic laws of financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 1-5.
    10. Gu, Gao-Feng & Zhou, Wei-Xing, 2007. "Statistical properties of daily ensemble variables in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 497-506.
    11. Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    12. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, Decembrie.
    13. Derksen, M. & Kleijn, B. & de Vilder, R., 2022. "Heavy tailed distributions in closing auctions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    14. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    15. L. L. B. Miranda & L. S. Lima, 2024. "Singular Stochastic Differential Equations for Time Evolution of Stocks Within Non-white Noise Approach," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 2685-2694, November.
    16. Pan, Raj Kumar & Sinha, Sitabhra, 2008. "Inverse-cubic law of index fluctuation distribution in Indian markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2055-2065.
    17. Stanley, H.Eugene, 2003. "Statistical physics and economic fluctuations: do outliers exist?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(1), pages 279-292.
    18. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    19. Stanley, H.E. & Amaral, L.A.N. & Gabaix, X. & Gopikrishnan, P. & Plerou, V., 2001. "Similarities and differences between physics and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 1-15.
    20. de Mattos Neto, Paulo S.G. & Silva, David A. & Ferreira, Tiago A.E. & Cavalcanti, George D.C., 2011. "Market volatility modeling for short time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3444-3453.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0403075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.