IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

On the power of generalized extreme value (GEV) and generalized Pareto distribution (GPD) estimators for empirical distributions of stock returns

  • Y. Malevergne
  • V. Pisarenko
  • D. Sornette

Using synthetic tests performed on time series with time dependence in the volatility with both Pareto and Stretched-Exponential distributions, it is shown that for samples of moderate sizes the standard generalized extreme value (GEV) estimator is quite inefficient due to the possibly slow convergence toward the asymptotic theoretical distribution and the existence of biases in the presence of dependence between data. Thus, it cannot distinguish reliably between rapidly and regularly varying classes of distributions. The Generalized Pareto distribution (GPD) estimator works better, but still lacks power in the presence of strong dependence. Applied to 100 years of daily returns of the Dow Jones Industrial Average and over one years of five-minutes returns of the Nasdaq Composite index, the GEV and GDP estimators are found insufficient to prove that the distributions of empirical returns of financial time series are regularly varying, because the rapidly varying exponential or stretched exponential distributions are equally acceptable.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Applied Financial Economics.

Volume (Year): 16 (2006)
Issue (Month): 3 ()
Pages: 271-289

in new window

Handle: RePEc:taf:apfiec:v:16:y:2006:i:3:p:271-289
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:16:y:2006:i:3:p:271-289. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.