IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v86y2013i4p1-1910.1140-epjb-e2013-30493-9.html
   My bibliography  Save this article

Hierarchy of temporal responses of multivariate self-excited epidemic processes

Author

Listed:
  • Alexander Saichev
  • Thomas Maillart
  • Didier Sornette

Abstract

Many natural and social systems are characterized by bursty dynamics, for which past events trigger future activity. These systems can be modelled by so-called self-excited Hawkes conditional Poisson processes. It is generally assumed that all events have similar triggering abilities. However, some systems exhibit heterogeneity and clusters with possibly different intra- and inter-triggering, which can be accounted for by generalization into the “multivariate” self-excited Hawkes conditional Poisson processes. We develop the general formalism of the multivariate moment generating function for the cumulative number of first-generation and of all generation events triggered by a given mother event (the “shock”) as a function of the current time t. This corresponds to studying the response function of the process. A variety of different systems have been analyzed. In particular, for systems in which triggering between events of different types proceeds through a one-dimension directed or symmetric chain of influence in type space, we report a novel hierarchy of intermediate asymptotic power law decays ∼ 1/t 1−(m+1)θ of the rate of triggered events as a function of the distance m of the events to the initial shock in the type space, where 0 > θ > 1 for the relevant long-memory processes characterizing many natural and social systems. The richness of the generated time dynamics comes from the cascades of intermediate events of possibly different kinds, unfolding via random changes of types genealogy. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Alexander Saichev & Thomas Maillart & Didier Sornette, 2013. "Hierarchy of temporal responses of multivariate self-excited epidemic processes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(4), pages 1-19, April.
  • Handle: RePEc:spr:eurphb:v:86:y:2013:i:4:p:1-19:10.1140/epjb/e2013-30493-9
    DOI: 10.1140/epjb/e2013-30493-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2013-30493-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2013-30493-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. BAUWENS, Luc & HAUTSCH, Nikolaus, 2006. "Modelling financial high frequency data using point processes," LIDAM Discussion Papers CORE 2006080, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Yannick Malevergne & Didier Sornette, 2006. "Extreme Financial Risks : From Dependence to Risk Management," Post-Print hal-02298069, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Didier Sornette & Thomas Maillart & Giacomo Ghezzi, 2014. "How Much Is the Whole Really More than the Sum of Its Parts? 1 ⊞ 1 = 2.5: Superlinear Productivity in Collective Group Actions," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    2. Maillart, Thomas & Sornette, Didier, 2019. "Aristotle vs. Ringelmann: On superlinear production in open source software," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 964-972.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Guo & Bruno Remillard & Anatoliy Swishchuk, 2020. "Multivariate General Compound Point Processes in Limit Order Books," Risks, MDPI, vol. 8(3), pages 1-20, September.
    2. Alves, L.G.A. & Ribeiro, H.V. & Lenzi, E.K. & Mendes, R.S., 2014. "Empirical analysis on the connection between power-law distributions and allometries for urban indicators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 175-182.
    3. Emmanuel Bacry & Jean-Francois Muzy, 2014. "Second order statistics characterization of Hawkes processes and non-parametric estimation," Papers 1401.0903, arXiv.org, revised Feb 2015.
    4. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    5. Donatien Hainaut & Renaud MacGilchrist, 2012. "Strategic asset allocation with switching dependence," Annals of Finance, Springer, vol. 8(1), pages 75-96, February.
    6. Diana, Tony, 2011. "Improving schedule reliability based on copulas: An application to five of the most congested US airports," Journal of Air Transport Management, Elsevier, vol. 17(5), pages 284-287.
    7. Monira Essa Aloud, 2016. "Time Series Analysis Indicators under Directional Changes: The Case of Saudi Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 55-64.
    8. Dietmar Pfeifer & Olena Ragulina, 2018. "Generating VaR Scenarios under Solvency II with Product Beta Distributions," Risks, MDPI, vol. 6(4), pages 1-15, October.
    9. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Statistics Poland, vol. 18(1), pages 91-114, March.
    10. Hernández-Ramírez, E. & del Castillo-Mussot, M. & Hernández-Casildo, J., 2021. "World per capita gross domestic product measured nominally and across countries with purchasing power parity: Stretched exponential or Boltzmann–Gibbs distribution?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    11. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    12. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    13. Steffen Volkenand & Günther Filler & Martin Odening, 2020. "Price Discovery and Market Reflexivity in Agricultural Futures Contracts with Different Maturities," Risks, MDPI, vol. 8(3), pages 1-17, July.
    14. Tang, Qihe & Yang, Fan, 2012. "On the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 217-227.
    15. César Garcia-Gomez & Ana Pérez & Mercedes Prieto-Alaiz, 2022. "The evolution of poverty in the EU-28: a further look based on multivariate tail dependence," Working Papers 605, ECINEQ, Society for the Study of Economic Inequality.
    16. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    17. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    18. Li, Jie & Li, Guangzhong & Zhou, Yinggang, 2015. "Do securitized real estate markets jump? International evidence," Pacific-Basin Finance Journal, Elsevier, vol. 31(C), pages 13-35.
    19. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, January.
    20. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.

    More about this item

    Keywords

    Statistical and Nonlinear Physics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:86:y:2013:i:4:p:1-19:10.1140/epjb/e2013-30493-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.