IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v1y2001i5p533-541.html
   My bibliography  Save this article

Multi-dimensional rational bubbles and fat tails

Author

Listed:
  • Y. Malevergne
  • D. Sornette

Abstract

Lux and Sornette have demonstrated that the tails of the unconditional distributions of price differences and of returns associated with the model of rational bubbles of Blanchard and Watson follow power laws (i.e. exhibit hyperbolic decline), with an asymptotic tail exponent μ<1 over an extended range. Although power-law tails are a pervasive feature of empirical data, the numerical value μ<1 is in disagreement with the usual empirical estimates μ3. Among the four hypotheses underlying the Blanchard and Watson rational bubbles model (rationality of the agents, no-arbitrage condition, multiplicative dynamics and bubble independence across assets), we prove that the same result μ<1 holds when relaxing the last hypothesis, i.e. by allowing coupling between different bubbles on several assets. Therefore, nonlinear extensions of the bubble dynamics or partial relaxation of the rational pricing principle are necessary.

Suggested Citation

  • Y. Malevergne & D. Sornette, 2001. "Multi-dimensional rational bubbles and fat tails," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 533-541.
  • Handle: RePEc:taf:quantf:v:1:y:2001:i:5:p:533-541
    DOI: 10.1080/713665876
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/713665876
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/713665876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Lin & Didier Sornette, 2023. "The inverse Cox-Ingersoll-Ross process for parsimonious financial price modeling," Papers 2302.11423, arXiv.org, revised Jun 2023.
    2. Sornette, D & Malevergne, Y, 2001. "From rational bubbles to crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 40-59.
    3. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    4. D. Sornette, 2000. ""Slimming" of power law tails by increasing market returns," Papers cond-mat/0010112, arXiv.org, revised Sep 2001.
    5. Jerome L Kreuser & Didier Sornette, 2017. "Super-Exponential RE Bubble Model with Efficient Crashes," Swiss Finance Institute Research Paper Series 17-33, Swiss Finance Institute.
    6. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    7. Y. Malevergne & V. F. Pisarenko & D. Sornette, 2003. "Empirical Distributions of Log-Returns: between the Stretched Exponential and the Power Law?," Papers physics/0305089, arXiv.org.
    8. Zhou, Wei-Xing & Sornette, Didier, 2003. "Evidence of a worldwide stock market log-periodic anti-bubble since mid-2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(3), pages 543-583.
    9. Sornette, D., 2002. "“Slimming” of power-law tails by increasing market returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(3), pages 403-418.
    10. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    11. Jan-Christian Gerlach & Jerome Kreuser & Didier Sornette, 2020. "Awareness of crash risk improves Kelly strategies in simulated financial time series," Papers 2004.09368, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:1:y:2001:i:5:p:533-541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.