IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.04560.html
   My bibliography  Save this paper

A Test for Jumps in Metric-Space Conditional Means

Author

Listed:
  • David Van Dijcke

Abstract

Standard methods for detecting discontinuities in conditional means are not applicable to outcomes that are complex, non-Euclidean objects like distributions, networks, or covariance matrices. This article develops a nonparametric test for jumps in conditional means when outcomes lie in a non-Euclidean metric space. Using local Fr\'echet regression, the method estimates a mean path on either side of a candidate cutoff. This extends existing $k$-sample tests to a non-parametric regression setting with metric-space valued outcomes. I establish the asymptotic distribution of the test and its consistency against contiguous alternatives. For this, I derive a central limit theorem for the local estimator of the conditional Fr\'echet variance and a consistent estimator of its asymptotic variance. Simulations confirm nominal size control and robust power in finite samples. Two empirical illustrations demonstrate the method's ability to reveal discontinuities missed by scalar-based tests. I find sharp changes in (i) work-from-home compositions at an income threshold for non-compete enforceability and (ii) national input-output networks following the loss of preferential U.S. trade access. These findings show the value of analyzing regression outcomes in their native metric spaces.

Suggested Citation

  • David Van Dijcke, 2025. "A Test for Jumps in Metric-Space Conditional Means," Papers 2507.04560, arXiv.org, revised Jul 2025.
  • Handle: RePEc:arx:papers:2507.04560
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.04560
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.04560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.