IDEAS home Printed from https://ideas.repec.org/p/ags/rffdps/10616.html
   My bibliography  Save this paper

Technology Adoption and Aggregate Energy Efficiency

Author

Listed:
  • Pizer, William A.
  • Harrington, Winston
  • Kopp, Raymond J.
  • Morgenstern, Richard D.
  • Shih, Jhih-Shyang

Abstract

Improved technology is often cited as a means to alter the otherwise difficult trade-off between the economic burden of regulation and environmental damage. Focusing on energy-saving technologies that mitigate the threat of climate change, we find that both energy prices and financial health influence technology adoption among a sample of industrial plants in four heavily polluting sectors. Based on a model linking technology adoption to growth in aggregate efficiency, we estimate that a doubling of energy prices, after raising the growth rate to 2.1%, would require slightly more than 50 years to generate a 50% improvement in aggregate efficiency relative to the baseline forecast.

Suggested Citation

  • Pizer, William A. & Harrington, Winston & Kopp, Raymond J. & Morgenstern, Richard D. & Shih, Jhih-Shyang, 2002. "Technology Adoption and Aggregate Energy Efficiency," Discussion Papers 10616, Resources for the Future.
  • Handle: RePEc:ags:rffdps:10616
    as

    Download full text from publisher

    File URL: http://ageconsearch.umn.edu/record/10616/files/dp020052.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gale A. Boyd & Stephen H. Karlson, 1993. "The Impact of Energy Prices on Technology Choice in the United States Steel Industry," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 47-56.
    2. Richard D. Morgenstern & William A. Pizer & Jhih-Shyang Shih, 2001. "The Cost Of Environmental Protection," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 732-738, November.
    3. Robert J. Barro, 1991. "Economic Growth in a Cross Section of Countries," The Quarterly Journal of Economics, Oxford University Press, vol. 106(2), pages 407-443.
    4. Davies, Stephen W., 1979. "Inter-firm diffusion of process innovations," European Economic Review, Elsevier, vol. 12(4), pages 299-317, October.
    5. Levin, Sharon G & Levin, Stanford L & Meisel, John B, 1987. "A Dynamic Analysis of the Adoption of a New Technology: The Case of Optical Scanners," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 12-17, February.
    6. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy paradox and the diffusion of conservation technology," Resource and Energy Economics, Elsevier, vol. 16(2), pages 91-122, May.
    7. Cohen, Wesley M. & Levin, Richard C., 1989. "Empirical studies of innovation and market structure," Handbook of Industrial Organization,in: R. Schmalensee & R. Willig (ed.), Handbook of Industrial Organization, edition 1, volume 2, chapter 18, pages 1059-1107 Elsevier.
    8. Sharon Oster, 1982. "The Diffusion of Innovation among Steel Firms: The Basic Oxygen Furnace," Bell Journal of Economics, The RAND Corporation, vol. 13(1), pages 45-56, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonilla, David, 2007. "Fuel Price Changes and the Adoption of Cogeneration in the U.K. and Netherlands," The Electricity Journal, Elsevier, vol. 20(7), pages 59-71.
    2. Liu, Xianbing & Fan, Yongbin & Li, Chen, 2016. "Carbon pricing for low carbon technology diffusion: A survey analysis of China's cement industry," Energy, Elsevier, vol. 106(C), pages 73-86.
    3. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    4. Kounetas, Kostas & Tsekouras, Kostas, 2008. "The energy efficiency paradox revisited through a partial observability approach," Energy Economics, Elsevier, vol. 30(5), pages 2517-2536, September.
    5. Bonilla, Jorge & Coria, Jessica & Mohlin, Kristina & Sterner, Thomas, 2014. "Diffusion of NOx abatement technologies in Sweden," Working Papers in Economics 585, University of Gothenburg, Department of Economics.
    6. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics,in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516 Elsevier.
    7. Löfgren, Åsa & Wråke, Markus & Hagberg, Tomas & Roth, Susanna, 2013. "The Effect of EU-ETS on Swedish Industry's Investment in Carbon Mitigating Technologies," Working Papers in Economics 565, University of Gothenburg, Department of Economics.
    8. Garrone, Paola & Grilli, Luca, 2010. "Is there a relationship between public expenditures in energy R&D and carbon emissions per GDP? An empirical investigation," Energy Policy, Elsevier, vol. 38(10), pages 5600-5613, October.
    9. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, Elsevier.
    10. Spyros Arvanitis & Marius Christian Ley, 2010. "Factors Determining the Adoption of Energy-saving Technologies in Swiss Firms," KOF Working papers 10-257, KOF Swiss Economic Institute, ETH Zurich.
    11. Liu, Xianbing & Niu, Dongjie & Bao, Cunkuan & Suk, Sunhee & Sudo, Kinichi, 2013. "Affordability of energy cost increases for companies due to market-based climate policies: A survey in Taicang, China," Applied Energy, Elsevier, vol. 102(C), pages 1464-1476.
    12. Hammar, Henrik & Löfgren, Åsa, 2010. "Explaining adoption of end of pipe solutions and clean technologies--Determinants of firms' investments for reducing emissions to air in four sectors in Sweden," Energy Policy, Elsevier, vol. 38(7), pages 3644-3651, July.
    13. Georgina Moreno & David Sunding, 2001. "Factor Price Risk and the Diffusion of Conservation Technology: Evidence from the Water Industry," Claremont Colleges Working Papers 2001-36, Claremont Colleges.
    14. repec:eee:energy:v:153:y:2018:i:c:p:825-835 is not listed on IDEAS

    More about this item

    Keywords

    Research and Development/Tech Change/Emerging Technologies;

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:rffdps:10616. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/rffffus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.