IDEAS home Printed from https://ideas.repec.org/p/ags/feempr/36758.html
   My bibliography  Save this paper

Measuring Service Quality: The Opinion of Europeans about Utilities

Author

Listed:
  • Ferrari, P.A.
  • Salini, S.

Abstract

This paper provides a comparative analysis of statistical methods to evaluate the consumer perception about the quality of Services of General Interest. The evaluation of the service quality perceived by users is usually based on Customer Satisfaction Survey data and an ex-post evaluation is then performed. Another approach, consisting in evaluating Consumers preferences, supplies an ex-ante information on Service Quality. Here, the ex-post approach is considered, two non-standard techniques - the Rasch Model and the Nonlinear Principal Component Analysis - are presented and the potential of both methods is discussed. These methods are applied on the Eurobarometer Survey data to assess the consumer satisfaction among European countries and in different years.

Suggested Citation

  • Ferrari, P.A. & Salini, S., 2008. "Measuring Service Quality: The Opinion of Europeans about Utilities," Privatisation Regulation Corporate Governance Working Papers 36758, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feempr:36758
    DOI: 10.22004/ag.econ.36758
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/36758/files/36-08.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.36758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Andrich, 1978. "A rating formulation for ordered response categories," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 561-573, December.
    2. Sendhil Mullainathan & Marianne Bertrand, 2001. "Do People Mean What They Say? Implications for Subjective Survey Data," American Economic Review, American Economic Association, vol. 91(2), pages 67-72, May.
    3. Lee Cronbach, 1951. "Coefficient alpha and the internal structure of tests," Psychometrika, Springer;The Psychometric Society, vol. 16(3), pages 297-334, September.
    4. Tenenhaus, Michel & Vinzi, Vincenzo Esposito & Chatelin, Yves-Marie & Lauro, Carlo, 2005. "PLS path modeling," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 159-205, January.
    5. Green, Paul E & Srinivasan, V, 1978. "Conjoint Analysis in Consumer Research: Issues and Outlook," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 5(2), pages 103-123, Se.
    6. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    7. Gatta, Valerio & Marcucci, Edoardo, 2007. "Quality and public transport service contracts," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 36, pages 92-106.
    8. Fiorio, Carlo V. & Florio, M. & Salini, S. & Ferrari, P.A., 2007. "Consumers' Attitudes on Services of General Interest in the EU: Accessibility, Price and Quality 2000-2004," Privatisation Regulation Corporate Governance Working Papers 12195, Fondazione Eni Enrico Mattei (FEEM).
    9. Pieralda FERRARI & Paola ANNONI & Silvia SALINI, 2005. "A comparison between alternative models for environmental ordinal data: Nonlinear PCA vs Rasch Analysis," Departmental Working Papers 2005-12, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia FIGINI & Ron S. KENETT & Silvia SALINI, 2010. "Integrating operational and financial risk assessments," Departmental Working Papers 2010-02, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pier Ferrari & Paola Annoni & Giancarlo Manzi, 2010. "Evaluation and comparison of European countries: public opinion on services," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(6), pages 1191-1205, October.
    2. Pier Ferrari & Silvia Salini, 2011. "Complementary Use of Rasch Models and Nonlinear Principal Components Analysis in the Assessment of the Opinion of Europeans About Utilities," Journal of Classification, Springer;The Classification Society, vol. 28(1), pages 53-69, April.
    3. Bacci, Silvia & Fabbricatore, Rosa & Iannario, Maria, 2023. "Multilevel IRT models for the analysis of satisfaction for distance learning during the Covid-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    4. Mueller, Gerrit & Plug, Erik, 2004. "Estimating the Effect of Personality on Male-Female Earnings," IZA Discussion Papers 1254, Institute of Labor Economics (IZA).
    5. Anja C. Rohenkohl & Monika Bullinger & Andreas M. Pleil & Levente Kriston & Julia H. Quitmann, 2016. "A Brief Version of the Quality of Life in Short Stature Youth Questionnaire - the QoLISSY-Brief," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 9(4), pages 971-984, December.
    6. Chang, Hsin-Li & Yang, Cheng-Hua, 2008. "Explore airlines’ brand niches through measuring passengers’ repurchase motivation—an application of Rasch measurement," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 105-112.
    7. Galeotti, Marzio & Rubashkina, Yana & Salini, Silvia & Verdolini, Elena, 2018. "Environmental policy performance and its determinants: Application of a three-level random intercept model," Energy Policy, Elsevier, vol. 114(C), pages 134-144.
    8. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    9. Ivana Bassi & Matteo Carzedda & Enrico Gori & Luca Iseppi, 2022. "Rasch analysis of consumer attitudes towards the mountain product label," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-25, December.
    10. Antonio Caronni & Marina Ramella & Pietro Arcuri & Claudia Salatino & Lucia Pigini & Maurizio Saruggia & Chiara Folini & Stefano Scarano & Rosa Maria Converti, 2023. "The Rasch Analysis Shows Poor Construct Validity and Low Reliability of the Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 (QUEST 2.0) Questionnaire," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    11. Singh, Jagdip, 2004. "Tackling measurement problems with Item Response Theory: Principles, characteristics, and assessment, with an illustrative example," Journal of Business Research, Elsevier, vol. 57(2), pages 184-208, February.
    12. Hua-Hua Chang, 1996. "The asymptotic posterior normality of the latent trait for polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 445-463, September.
    13. Mohsin, Asad & Lengler, Jorge & Aguzzoli, Roberta, 2015. "Staff turnover in hotels: Exploring the quadratic and linear relationships," Tourism Management, Elsevier, vol. 51(C), pages 35-48.
    14. Curt Hagquist & Raili Välimaa & Nina Simonsen & Sakari Suominen, 2017. "Differential Item Functioning in Trend Analyses of Adolescent Mental Health – Illustrative Examples Using HBSC-Data from Finland," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 10(3), pages 673-691, September.
    15. David Magis, 2015. "A Note on the Equivalence Between Observed and Expected Information Functions With Polytomous IRT Models," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 96-105, February.
    16. Clem Brooks, 1994. "The Selectively Political Citizen?," Sociological Methods & Research, , vol. 22(4), pages 419-459, May.
    17. Ned Kock, 2015. "PLS-based SEM Algorithms: The Good Neighbor Assumption, Collinearity, and Nonlinearity," Information Management and Business Review, AMH International, vol. 7(2), pages 113-130.
    18. Francesca Pagliara & Massimo Aria & Lucia Russo & Valentina Della Corte, 2021. "A theoretical model linking the development of the transportation system with citizens' trust in government actors," Papers in Regional Science, Wiley Blackwell, vol. 100(1), pages 273-285, February.
    19. Maud Dampérat & Ping Lei & Florence Jeannot, 2019. "IRT Approach for rating scales: applications for normal and non-normal distributions," Post-Print hal-04325043, HAL.
    20. Immacolata Di Napoli & Pasquale Dolce & Caterina Arcidiacono, 2019. "Community Trust: A Social Indicator Related to Community Engagement," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 145(2), pages 551-579, September.

    More about this item

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • L95 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Gas Utilities; Pipelines; Water Utilities
    • L96 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Telecommunications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feempr:36758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.