IDEAS home Printed from https://ideas.repec.org/p/ags/egtewp/202593.html
   My bibliography  Save this paper

A Stochastic Production Function Analysis of Maize Hybrids and Yield Variability in Drought-Prone Areas of Kenya

Author

Listed:
  • Jones, Ashley D.
  • Dalton, Timothy J.
  • Smale, Melinda

Abstract

No abstract is available for this item.

Suggested Citation

  • Jones, Ashley D. & Dalton, Timothy J. & Smale, Melinda, 2012. "A Stochastic Production Function Analysis of Maize Hybrids and Yield Variability in Drought-Prone Areas of Kenya," Working Papers 202593, Egerton University, Tegemeo Institute of Agricultural Policy and Development.
  • Handle: RePEc:ags:egtewp:202593
    DOI: 10.22004/ag.econ.202593
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/202593/files/WP49-A-Stochastic-Production-Function-Analysis-of-Maize-Hybr.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karanja, D. D. & Renkow, M. & Crawford, E. W., 2003. "Welfare effects of maize technologies in marginal and high potential regions of Kenya," Agricultural Economics, Blackwell, vol. 29(3), pages 331-341, December.
    2. Murat Isik, 2002. "Resource Management under Production and Output Price Uncertainty: Implications for Environmental Policy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 557-571.
    3. B. L. Gardner & G. C. Rausser (ed.), 2001. "Handbook of Agricultural Economics," Handbook of Agricultural Economics, Elsevier, edition 1, volume 1, number 2, 00.
    4. Chamberlin, Jordan & Jayne, Thomas S., 2009. "Has Kenyan Farmers’ Access to Markets and Services Improved? Panel Survey Evidence, 1997-2007," Food Security Collaborative Working Papers 58545, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    5. Rulon D. Pope, 2003. "Agricultural Risk Analysis: Adequacy of Models, Data, and Issues," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(5), pages 1249-1256.
    6. Just, Richard E & Zilberman, David, 1983. "Stochastic Structure, Farm Size and Technology Adoption in Developing Agriculture," Oxford Economic Papers, Oxford University Press, vol. 35(2), pages 307-328, July.
    7. Tavneet Suri, 2011. "Selection and Comparative Advantage in Technology Adoption," Econometrica, Econometric Society, vol. 79(1), pages 159-209, January.
    8. Murat Isik & Madhu Khanna, 2003. "Stochastic Technology, Risk Preferences, and Adoption of Site-Specific Technologies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 305-317.
    9. Greg Traxler & Jose Falck-Zepeda & J.I. Ortiz-Monasterio R. & Ken Sayre, 1995. "Production Risk and the Evolution of Varietal Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(1), pages 1-7.
    10. john M. Antle, 2010. "Asymmetry, Partial Moments, and Production Risk," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(5), pages 1294-1309.
    11. B. L. Gardner & G. C. Rausser (ed.), 2001. "Handbook of Agricultural Economics," Handbook of Agricultural Economics, Elsevier, edition 1, volume 1, number 1, 00.
    12. Hugo De Groote & George Owuor & Cheryl Doss & James Ouma & Lutta Muhammad & K. Danda, 2005. "The Maize Green Revolution in Kenya Revisited," The Electronic Journal of Agricultural and Development Economics, Food and Agriculture Organization of the United Nations, vol. 2(1), pages 32-49.
    13. Salvatore Di Falco & Jean‐Paul Chavas & Melinda Smale, 2007. "Farmer management of production risk on degraded lands: the role of wheat variety diversity in the Tigray region, Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 36(2), pages 147-156, March.
    14. Salvatore Di Falco & Jean-Paul Chavas, 2006. "Crop genetic diversity, farm productivity and the management of environmental risk in rainfed agriculture," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 33(3), pages 289-314, September.
    15. Bhavani Shankar & Richard Bennett & Steve Morse, 2007. "Output Risk Aspects Of Genetically Modified Crop Technology In South Africa," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 16(4), pages 277-291.
    16. Just, Richard E. & Pope, Rulon D., 1978. "Stochastic specification of production functions and economic implications," Journal of Econometrics, Elsevier, vol. 7(1), pages 67-86, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathenge, Mary K. & Smale, Melinda & Olwande, John, 2012. "The Impact of Maize Hybrids on Income, Poverty, and Inequality among Smallholder Farmers in Kenya," Food Security International Development Working Papers 146931, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    2. Martina Bozzola & Melinda Smale & Salvatore Di Falco, 2016. "Climate, Shocks, Weather and Maize Intensification Decisions in Rural Kenya," CIES Research Paper series 40-2016, Centre for International Environmental Studies, The Graduate Institute.
    3. Bozzola, Martina & Smale, Melinda, 2020. "The welfare effects of crop biodiversity as an adaptation to climate shocks in Kenya," World Development, Elsevier, vol. 135(C).
    4. Mathenge, Mary K. & Smale, Melinda & Olwande, John, 2014. "The impacts of hybrid maize seed on the welfare of farming households in Kenya," Food Policy, Elsevier, vol. 44(C), pages 262-271.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zheng & Rejesus, Roderick M. & Zheng, Xiaoyong, 2018. "Nonparametric Estimation and Inference of Production Risk with Categorical Variables," 2018 Annual Meeting, August 5-7, Washington, D.C. 274400, Agricultural and Applied Economics Association.
    2. Ragnar Tveteras & Ola Flaten & Gudbrand Lien, 2011. "Production risk in multi-output industries: estimates from Norwegian dairy farms," Applied Economics, Taylor & Francis Journals, vol. 43(28), pages 4403-4414.
    3. Lyman, Nathaniel & Nalley, Lawton Lanier, 2013. "Stochastic Valuation of Hybrid Rice Technology in Arkansas," 2013 Annual Meeting, February 2-5, 2013, Orlando, Florida 142505, Southern Agricultural Economics Association.
    4. Mathenge, Mary K. & Smale, Melinda & Olwande, John, 2012. "The Impact of Maize Hybrids on Income, Poverty, and Inequality among Smallholder Farmers in Kenya," Food Security International Development Working Papers 146931, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    5. Hurley, Terrance M., 2010. "A review of agricultural production risk in the developing world," Working Papers 188476, HarvestChoice.
    6. Murat Isik & Madhu Khanna, 2003. "Stochastic Technology, Risk Preferences, and Adoption of Site-Specific Technologies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 305-317.
    7. Finger, Robert & Lazzarotto, Patrick & Calanca, Pierluigi, 2010. "Bio-economic assessment of climate change impacts on managed grassland production," Agricultural Systems, Elsevier, vol. 103(9), pages 666-674, November.
    8. Teresa Serra & David Zilberman & José M. Gil, 2008. "Differential uncertainties and risk attitudes between conventional and organic producers: the case of Spanish arable crop farmers," Agricultural Economics, International Association of Agricultural Economists, vol. 39(2), pages 219-229, September.
    9. Niklas Möhring & Martina Bozzola & Stefan Hirsch & Robert Finger, 2020. "Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 429-444, May.
    10. Finger, Robert, 2012. "Nitrogen use and the effects of nitrogen taxation under consideration of production and price risks," Agricultural Systems, Elsevier, vol. 107(C), pages 13-20.
    11. Finger, Robert, 2011. "Reductions of Agricultural Nitrogen Use Under Consideration of Production and Price Risks," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114356, European Association of Agricultural Economists.
    12. Xavier Vollenweider & Salvatore Di Falco & Cathal O�Donoghue, 2011. "Risk preferences and voluntary agrienvironmental schemes: does risk aversion explain the uptake of the Rural Environment Protection Scheme?," GRI Working Papers 48, Grantham Research Institute on Climate Change and the Environment.
    13. Moser, Stefan & Mußhoff, Oliver, 2017. "Comparing the Use of Risk influencing Production Inputs and Experimentally Measured Risk Attitude: Do the Decisions of Indonesian Small scale Rubber Farmers Match?," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 66(2), June.
    14. Skevas, Theodoros & Stefanou, Spiro E. & Oude Lansink, Alfons, 2014. "Pesticide use, environmental spillovers and efficiency: A DEA risk-adjusted efficiency approach applied to Dutch arable farming," European Journal of Operational Research, Elsevier, vol. 237(2), pages 658-664.
    15. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    16. De Pinto, Alessandro & Robertson, Richard D. & Obiri, Beatrice Darko, 2013. "Adoption of climate change mitigation practices by risk-averse farmers in the Ashanti Region, Ghana," Ecological Economics, Elsevier, vol. 86(C), pages 47-54.
    17. Coromaldi, Manuela & Pallante, Giacomo & Savastano, Sara, 2015. "Adoption of modern varieties, farmers' welfare and crop biodiversity: Evidence from Uganda," Ecological Economics, Elsevier, vol. 119(C), pages 346-358.
    18. Müller, Marc & Sanfo, Safietou & Laube, Wolfram, 2013. "Impact of Changing Seasonal Rainfall Patterns on Rainy-Season Crop Production in the Guinea Savannah of West Africa," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 151208, Agricultural and Applied Economics Association.
    19. Serra, Teresa & Zilberman, David & Goodwin, Barry K. & Featherstone, Allen M., 2005. "Effects of Decoupling on the Average and the Variability of Output," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24601, European Association of Agricultural Economists.
    20. Genti Kostandini & Bradford F. Mills & Steven Were Omamo & Stanley Wood, 2009. "Ex ante analysis of the benefits of transgenic drought tolerance research on cereal crops in low‐income countries," Agricultural Economics, International Association of Agricultural Economists, vol. 40(4), pages 477-492, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:egtewp:202593. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: https://edirc.repec.org/data/tiegeke.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.